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A B S T R A C T

Fine-grained noise maps are vital for epidemiological studies on traffic noise. However, detailed information on 
traffic noise is often limited, especially in Eastern Europe. When acoustic noise propagation models are un-
available, rigid linear noise land-use regressions are typically employed to estimate noise levels; however, ma-
chine learning likely offers more accurate noise predictions. We innovated by comparing the predictive 
accuracies of supervised machine learning models to estimate traffic noise levels across the five largest Bulgarian 
cities. In situ A-weighted equivalent continuous sound levels were obtained from 232 fixed-site monitors across 
these cities. We included transport- and land-use-related predictors using 50–1,000 m buffers. Extreme gradient 
boosting (XGB) had the highest ten-fold cross-validated fit (R²=0.680) and the lowest root mean square error 
(RMSE=4.739), insignificantly besting the random forest-based model (R²=0.667, RMSE=4.895). Support vector 
regression (R²=0.633, RMSE=5.358), elastic net (R²=0.568, RMSE=5.625), and linear regression (R²=0.548, 
RMSE=5.569) performed significantly worse. Shapley values for the XGB showed that the length of major roads 
within 100 m buffers, footways within 50 m buffers, residential roads within 50 m buffers, and the number of 
buildings within 50 m buffers were important non-linear predictors. Our spatially resolved noise maps revealed 
striking geographic noise variations and that, on average, 96.8 % of the urban population experiences harmful 
noise levels.

1. Introduction

Transport noise is a primary source of noise pollution (Mann & 
Singh, 2022) and an environmental stressor detrimental to human 
health (Welch et al., 2023; World Health Organization, 2018). 
Meta-analyses have substantiated that excessive traffic noise exposure 
puts people at risk for non-auditory adverse health outcomes, including 
elevated annoyance (Guski et al., 2017), blood pressure (Chen et al., 
2023), mental illness (Lan et al., 2020), and sleep disturbance (Smith 
et al., 2022). Furthermore, urban noise is unevenly distributed 

(European Environment Agency, 2019), with some areas experiencing 
disproportionate burdens (Hayward & Helbich, 2024; Peris & Arguelles, 
2023). Approximately 20 % of Europeans, predominantly in urban 
areas, are exposed to unhealthy noise concentrations of >55 decibels 
(dB) during the day-evening-night period (European Environment 
Agency, 2021). In Bulgaria, the proportion is substantially worse, with 
76 % of urban inhabitants exposed to harmful road noise (European 
Environment Agency, 2024).

Monitoring traffic noise across cities comprehensively is often 
infeasible because measurements are time-consuming, expensive, and 
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labor-intensive (Mann & Singh, 2022). However, the European Envi-
ronmental Noise Directive 2002/49/EC obligates countries to conduct 
strategic noise assessments (European Environment Agency, 2019; 
Murphy & King, 2010). For Bulgarian cities with >100,000 inhabitants, 
these traffic noise maps are delivered only in five dB(A) isophones rather 
than continuously and have been rated as low quality for health research 
purposes (Khomenko et al., 2022). Thus, such noise maps are only 
conditionally suitable for epidemiological studies as they can lead to 
exposure misclassification due to limited exposure contrasts and statis-
tical power. Additionally, as strategic noise assessments target noise 
levels in high-exposure areas, low-traffic areas may be underrepresented 
(Dzhambov et al., 2023).

Consequently, the accurate and continuous mapping of noise expo-
sure is an area of ongoing research using various approaches (Khan 
et al., 2018; Meller et al., 2023). Acoustic models that rely on the physics 
of noise propagation are the gold standard (Chang et al., 2012; Murphy 
& King, 2010). However, their application is often limited to selected 
sites or street segments due to input parameter sensitivity (e.g., façade 
information) (Chang et al., 2019; Xie et al., 2011). Geostatistical 
interpolation-based models (e.g., kriging) using measurements solely 
from monitoring sites also face challenges as they over-smooth small--
scale noise contrasts (Aumond et al., 2018; Harman et al., 2016).

To spatialize measurements retrieved from stationary monitoring 
sites, land-use regression (LUR) models (Briggs et al., 1997; Hoek et al., 
2008; Ma et al., 2024) are gaining popularity for noise mapping. LUR 
models capture small-scale noise variations on the principle that noise 
levels are a function of environmental characteristics (e.g., traffic or 
land-use-related) occurring within the ambit of monitoring sites. The 
fitted LUR is subsequently applied to predict spatially resolved noise 
levels at unsampled locations. The few available LUR-based studies 
predominantly use linear regression models (LM) (Aguilera et al., 2015; 
Chang et al., 2019; Gharehchahi et al., 2024; Harouvi et al., 2018; Raess 
et al., 2021; Staab et al., 2022; Xie et al., 2011; Xu et al., 2022). Despite 
LMs performing reasonably well, they rely on strong statistical as-
sumptions (e.g., linearities) and are prone to overfitting when there are 
many predictors and few monitoring sites available, possibly inflating 
the accuracy of the noise mapping (Basagaña et al., 2012; Wang et al., 
2012).

Unlike LMs, supervised machine learning (ML) models are more 
flexible (Zhu et al., 2023) and may supersede traditional LURs in their 
predictive ability (Fallah-Shorshani et al., 2022; Liu et al., 2020; Yin 
et al., 2020). ML models can efficiently handle high-dimensional data, 
approximate possible non-linear associations, and incorporate variable 
interactions that are not explicitly defined. They are also less con-
strained by restrictive underlying assumptions (Zhu et al., 2023). Ad-
vancements in ML resulted in many algorithms, making choosing a 
well-performing model difficult (Fernández-Delgado et al., 2014; 
Sekeroglu et al., 2022). Few studies, and none in Europe, have used ML 
for noise mapping (Fallah-Shorshani et al., 2022; Liu et al., 2020; Yin 
et al., 2020). The results of these studies have suggested that ML often, 
though not always, outperforms traditional LURs. For example, a Ca-
nadian study showed that random forest (RF) models outperformed LMs 
(Liu et al., 2020).

State-of-the-art ML algorithms applied to noise mapping focus on 
prediction accuracy, with little attention paid to the interpretability of 
such ‘black-box’ models. To explicate ML models’ noise predictions, 
model-agnostic explainable ML approaches, including SHapley Additive 
exPlanations (SHAP), appear promising (Belle & Papantonis, 2021; 
Lundberg et al., 2020). As a unified framework for model interpret-
ability, SHAP values explain individual predictions and overall model 
behavior. SHAP can, for example, uncover non-linearities between noise 
levels and environmental predictors and determine the importance of 
specific observations and predictors, all critical aspects to understanding 
complex ML-based noise models (Lundberg & Lee, 2017; Štrumbelj & 
Kononenko, 2014). To overcome the constraints of existing noise LUR 
approaches, we aimed 1) to develop the first-of-its-kind high-resolution 

traffic noise maps based on fixed-site monitoring data in urban Bulgaria; 
2) to systematically compare and explain the predictive accuracies of 
ML-based LURs to estimate traffic noise; and 3) to assess the proportion 
of people exposed to unhealthy traffic noise exceeding 55 dB(A).

2. Materials and methods

2.1. Study area

The study was conducted in Bulgaria, the fifth most noise-polluted 
European country by the percentage of the urban population exposed 
to unhealthy traffic noise (European Environment Agency, 2021). We 
included the administrative areas of the five largest cities, including 
Sofia (≈1,249,000 people), Plovdiv (≈347,000 people), Varna (≈333, 
000 people), Burgas (≈203,000 people), and Ruse (≈145,000 people). 
Supplementary Figure S1 shows the locations of the cities, each having a 
specific mix of land-use comprising residential, commercial, and in-
dustrial sites as well as different road types, from local roads to major 
arterial roads. Sofia, Varna, and Burgas have airports situated in their 
vicinities. Plovdiv, by contrast, has an airport located in the surround-
ings, likely having minimal impact on its residents. All the cities possess 
railway networks, and Sophia also has a public tram system.

2.2. Noise measurement campaign

Local public health offices (i.e., Regional Health Inspectorates) per-
formed legally mandated noise measurements at similar locations. We 
obtained measurement data from 232 fixed monitoring sites (75 in Sofia, 
45 in Plovdiv, 45 in Varna, 37 in Burgas, and 30 in Ruse). Monitoring 
sites were geocoded (2018) using global positioning system (GPS) de-
vices to enable precise repeated measurements. The fixed measurement 
stations were adjacent to traffic lanes, industrial sites, and residential 
and recreational areas. To obtain noise measurements across differing 
land-use types, 40 % of the monitoring sites were next to traffic lanes, 30 
% were at industrial sites, and 30 % were in noise-limited areas. The 
measurement protocol specified a distance of approximately 7.5 m be-
tween each monitoring site and the adjacent roadway. Supplementary 
Figure S2 displays the geographic distribution of the sites.

2.3. Noise measurements

Field workers from Regional Health Inspectorates took measure-
ments with calibrated sound level meters three times a day (at least two 
measurements were during peak traffic hours) over two daytime periods 
between 07:00 and 19:00 h following ISO 1996–2 protocol norms. Each 
measurement was taken approximately 1.5 m above the ground for 
15–20 min. Multiple brands of sound level meters were in use, with their 
types varying across cities and over time. However, Brüel & Kjær type 
2238 sound meters with 4188 microphones and 4231 sound calibrators 
exemplified commonly used systems.

Measurements were available in equivalent continuous sound levels 
(A-weighted, in dB) (LAeq). For each sampling point, we had sound level 
data for each year from 2018 to 2022. Due to the high correlation and 
stability of the measured sound levels over time, we used the average 
values from 2018 to 2022 as the dependent variable in our LUR models 
(Das et al., 2019). Since our measurement campaign included COVID-19 
lockdowns, we also assessed the temporal stability of our annual noise 
measurements. The yearly means and standard deviations (SD) revealed 
no significant fluctuations (2018: 63.17 [SD ± 8.34]; 2019: 63.19 [SD ±
8.47]; 2020: 62.56 [SD ± 8.54]; 2021: 62.90 [SD ± 8.49]; 2022: 62.56 
[SD ± 8.54]).

2.4. Candidate predictor variables

The selection of covariates was informed by the literature (Aguilera 
et al., 2015; Gharehchahi et al., 2024; Ragettli et al., 2016) but 
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constrained by data availability. We primarily considered covariates 
related to road or land-use features. Table 1 shows the candidate pre-
dictors. Road-based predictors represented the primary noise sources 
with magnitudes depending on their expected traffic capacity. Data was 
downloaded in October 2023 on different road categories’ centerlines 
from OpenStreetMap (OSM) (Arsanjani et al., 2015). We included 
Euclidean distances between measurement locations (or the cell cen-
troids) and the closest roads (e.g., motorways, primary roads, or foot-
ways). Additionally, we centered circular buffers ranging from 50 m to 
1000 m on the measurement locations (or the cell centroids for the 
predictions) to assess the total lengths of different road types within 
buffer sizes. We believed that smaller buffers affected sound propagation 
more directly than larger ones that incorporated sparsely distributed 
road types (e.g., motorways).

The most recent 2018 pan-European Urban Atlas provided land-use 
features (Copernicus, 2024). The nomenclature includes 17 urban clas-
ses with a minimum mapping unit of 0.25 ha. We considered Euclidean 
distances and the presence of different land-use types, including green 
urban areas (i.e., 14,100), other green spaces (i.e., 23,000: pastures, 22, 
000: permanent crops, and 31,000: forests), and urban fabric (i.e., 11, 
100: continuous urban fabric, 12,100: industrial, commercial, public, 

military and private units). We also included distances to airports (i.e., 
12,400) and railroads (i.e., 12,230), which potentially can contribute to 
noise emissions. Since noise levels increase with urban density, we also 
included the number of buildings (i.e., their centroids) obtained from 
the cadaster (2023) from the local mapping agencies within our buffers 
and the degree of artificially sealed areas within buffers. The latter was 
acquired from the European imperviousness layer (10 m resolution) for 
2018 and measures the degree of sealed areas ranging from zero to one, 
with higher values referring to increased imperviousness density. 
Finally, to incorporate spatial dependency between the observations, we 
also included the locational coordinates for each site.

2.5. Modeling approaches

2.5.1. Considered algorithms
We fitted a basic linear regression (LM) as our benchmark model 

(Aguilera et al., 2015; Gharehchahi et al., 2024; Ragettli et al., 2016). 
Variance inflation factors assessed predictor collinearity stepwise, with 
values >10 deemed problematic (Craney & Surles, 2002), and there-
after, we applied forward stepwise regression. Guided by comparative 
ML studies (Fernández-Delgado et al., 2014; Hagenauer et al., 2019; 
Sekeroglu et al., 2022), we also developed noise models based on four 
ML algorithms and all the predictors (exclusive the length of secondary 
roads within 50 m and 200 m buffers which were perfectly correlated 
with the other predictors): First, the elastic net (ENet) integrated the 
properties of lasso and ridge regression by permitting variable selection 
through coefficient shrinkage and handled predictor collinearity (Zou & 
Hastie, 2005). Second, the support vector regression (SVR) (Smola & 
Schölkopf, 2004) with a radial basis kernel used a hyperplane that fit 
best within a predefined margin around the data points transformed into 
a high-dimensional space where a linear approximation was feasible. 
Third, the random forest (RF) used an ensemble of regression trees 
(Breiman, 2001; Wright & Ziegler, 2017). For the training of each tree, a 
bootstrap sample of the data was selected. At each tree’s splitting node, a 
random sample of features was selected. After training the unpruned 
trees, the predictions were averaged across the trees. Fourth, we applied 
extreme gradient boosting (XGB), which considers an ensemble of 
sequentially trained weak learners, typically regression trees (Chen & 
Guestrin, 2016). Iteratively, each tree was trained on the residuals of the 
previous one, gradually enhancing the prediction accuracy. We com-
bined the predictions from all the trees to obtain the final predictions. 
Since ML models tend to perform better with many observations, we 
pooled the data rather than conducting city-specific analyses.

2.5.2. Model tuning, validation, and selection
A robust model that does not overfit is a prerequisite to obtaining 

accurate predictions. Except for basic regression, ML models have 
hyperparameters that require tuning before assessing the prediction 
accuracy of the trained model (Kohavi, 1995). We applied ten-fold 
cross-validation (CV) to determine the best hyperparameters of each 
model nested within four times repeated ten-fold CV to assess the pre-
dictive performance. Repeating the CV reduces sampling variability and 
ensures that the predictive performance is less dependent on a particular 
random split. Supplementary Table S1 summarizes the tested hyper-
parameters, and Supplementary Table S2 the selected ones. As the 
predictors were skewed, we applied the Yeo-Johnson transformation to 
obtain more symmetrically distributed predictors (Yeo & Johnson, 
2000).

We reported three performance metrics between the observed and 
predicted values: the root mean square error (RMSE), the mean absolute 
error (MAE), and the coefficient of determination (R2). To test whether 
the models’ predictions differed statistically from one another by 
applying two-tailed Wilcoxon rank-sum tests with the Benjami-
ni–Hochberg correction for multiple testing. If p < 0.05, the models 
significantly differed.

When fitting aspatial models using geospatial data, it is critical for 

Table 1 
Candidate predictors used in the LUR development for road traffic noise.

Variable description Abbreviations Source

Geocoded locations of the measurement sites (XY 
coordinates, EPSG: 7801)

X, Y Authors

Euclidean distance to the nearest road of any class (in 
m)

DARoad OSM

Euclidean distance to the nearest motorway, primary, 
or secondary road (in m)

DMRoad OSM

Euclidean distance to the nearest motorway (in m) DMWay OSM
Euclidean distance to the nearest primary road (in m) DPRoad OSM
Euclidean distance to the nearest secondary road (in 

m)
DSRoad OSM

Euclidean distance to the nearest tertiary road (in m) DTRoad OSM
Euclidean distance to the nearest residential road (in 

m)
DRRoad OSM

Euclidean distance to the nearest footway (in m) DFWay OSM
Length (in m) of all roads within 50 m, 100 m, 200 m 

buffers
LARoad OSM

Length (in m) of motorway, primary or secondary 
roads within 50 m, 100 m, 200 m buffers

LMRoad OSM

Length (in m) of primary roads within 50 m, 100 m, 
200 m, 300 m, 500 m, 1000 m buffers

LPRoad OSM

Length (in m) of motorway within 50 m, 100 m, 200 m, 
300 m, 500 m, 1000 m buffers

LMWay OSM

Length (in m) of secondary roads within 50 m, 100 m, 
200 m, 300 m, 500 m, 1000 m buffers

LSRoad OSM

Length (in m) of tertiary roads within 50 m, 100 m, 200 
m, 300 m, 500 m, 1000 m buffers

LTRoad OSM

Length (in m) of residential roads within 50 m, 100 m, 
200 m, 300 m, 500 m, 1000 m buffers

LRRoad OSM

Length (in m) of footways within 50 m, 100 m, 200 m, 
300 m, 500 m, 1000 m buffers

LFWay OSM

Euclidean distance to the nearest airport (in m) DAir UA
Euclidean distance to the nearest railway (in m) DRail UA
Euclidean distance to the nearest green space (in m) DGreen UA
Euclidean distance to the nearest green space of other 

types (pastures, crops, or forests) (in m)
DOGreen UA

Euclidean distance to the nearest continuous urban 
fabric (in m)

DUrban UA

Euclidean distance to the nearest industrial, 
commercial, public, military, and private units (in 
m)

DOLU UA

Mean imperviousness density within 50 m, 100 m, 200 
m, 300 m, 500 m, 1000 m buffers

Imp UA

Number of building centroids within 50 m, 100 m, 200 
m, 300 m, 500 m, 1000 m buffers

Build Cadastre

Note that numbers reported after the abbreviation refer to the buffer size. OSM =
OpenStreetMap, UA = Urban Atlas. For predictors that include motorways, the 
buffer size was restricted to the immediate surroundings being more directly 
affected by sound propagation.
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inference that the residuals are spatially independent. We used Moran’s I 
statistic to examine residual spatial independence based on an inverse 
distance weight matrix specification. We tested significance over 999 
Monte Carlo simulations. The analyses were done in R (R Core Team, 
2024) with the leaps, elasticnet, kernlab, ranger, and xgboost package. The 
caret package provided an interface for the algorithms’ parameter tuning 
and validation (Kuhn et al., 2013). For the reproducibility of our anal-
ysis, we provide the R code as supplementary files.

2.5.3. Model interpretation
To overcome the hurdle of model interpretability, we opted for an in- 

depth understanding of the best-performing model. As a post hoc 
approach, we employed SHapley Additive exPlanations (SHAP), as 
implemented in the R package imp (Molnar et al., 2018). SHAP is a 
unified approach to explaining ML predictions by generating locally 
additive feature attribution (Lundberg et al., 2020). Using a trained 
model, SHAP decomposes predictions into observation-specific expla-
nations by capturing the average attribution for each observation to the 
model’s prediction in every possible order (Lundberg & Lee, 2017).

We used SHAP values in four ways (Molnar et al., 2018): First, to 
capture the global predictor importance, we determined the mean ab-
solute SHAP values for each one. Additionally, we assessed each pre-
dictor’s mean absolute SHAP values for each city to explore possible 
between-city differences in terms of predictor importance. The higher 
the absolute SHAP value, the more critical the predictor. Second, we 
generated beeswarm plots, allowing further deconstruction of how each 
observation affected the prediction for each city. Higher SHAP values 
referred to greater effects (positive or negative), with negative SHAP 
values exerting negative effects on outcomes and vice versa. Third, we 
used SHAP dependence plots to assess the shape of the 
predictors-outcome associations. The SHAP analyses were limited to the 
eight most important predictors.

2.5.4. Traffic noise predictions
We mapped the traffic noise estimates of the best-performing model. 

We superimposed a 50 m grid on each city to obtain predicted noise 
levels in dB(A) and used Leaflet to create an interactive noise map to 
facilitate data exploration. We also estimated the proportions of the 
population exposed to traffic noise levels ranging from 40 to 70 dB(A) in 
5 dB(A) isophones. National census data from 2021 provided the pop-
ulation estimates.

3. Results

3.1. Noise measurements

We used in-situ noise measurements from 232 sites. The mean noise 
level across the measurements taken in the cities was 63.0 dB(A) (SD ±
8.2). The average noise levels taken in a city ranged from a minimum of 
39.7 to a maximum of 75.3 dB(A), representing a 35.6 dB(A) difference. 
Mean noise distributions varied across and within the cities (Fig. 1) 
despite only moderate geographic variations. Observed mean noise 
levels were highest in Plovdiv (68.36 ± 2.97), followed by Ruse (65.45 
± 5.71), Burgas (64.81 ± 9.77), Sofia (61.53 ± 7.98), and Varna (57.06 
± 7.95). Across all cities, inner-city areas experienced higher noise 
levels than suburban areas.

3.2. Cross-validated predictive accuracy

Fig. 2 and Supplementary Table S3 summarize the fit statistics for the 
five competing models based on the four times repeated ten-fold CV 
after hyperparameter tuning. All models achieved good median cross- 
validated fits, regardless of the measure. However, the XGB model 
exhibited the best fit, followed by the RF model. The XGB model ach-
ieved the highest R2 of 0.680 and the lowest RMSE of 4.739 dB(A), 
followed by the RF (R2=0.665; RMSE=4.895), the SVR (R2=0.633; 
RMSE=5.358), and the ENet (R2=0.568; RMSE=5.625). The difference 
between the XGB and RF models was statistically insignificant based on 
the Wilcoxon test (p > 0.05), but XGB significantly outperformed the 
remaining models (all p < 0.05). The traditional LM with forward pre-
dictor selection (based on the Euclidean distance to the nearest 
motorway, primary, or secondary road, the nearest railway, impervi-
ousness density within 200 m buffers, tertiary roads within 50 m, and 
the Y coordinate) performed the least well among the tested models, 
with an R2 of 0.548 (RMSE=5.569). The MAEs mimicked the results of 
the RMSEs.

Supplementary Figure S3 depicts RMSE and MAE values for each city 
based on the pooled data. Regardless of the model examined, the box-
plots indicated that the prediction errors varied by city. For example, the 
XGB model had the lowest RMSE and MAE values in Plovdiv and Ruse, 
while the prediction errors were greatest in Varna and Sofia. Fig. 3
serves as an in-sample model diagnostic of how well the predicted noise 
levels matched the measured ones. We did not observe any systematic 
over- or underpredictions for the XGB and the RF model. However, the 

Fig. 1. Equivalent continuous noise distribution for each city (LAeq in dB(A)).
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spread between the predicted and measured noise levels increased with 
decreasing R2 (see LM). XGB’s residual Moran’s I was − 0.039 (p =
0.186). None of the other models faced spatially autocorrelated re-
siduals (Supplementary Table S4).

3.3. Model explanation

Fig. 4 summarizes the most important predictors of the mean abso-
lute SHAP values from the best-performing XGB model. Across cities, the 
length of major roads within 100 m buffers was consistently the most 
important predictor, followed by the length of footways within 50 m 
buffers, and the length of residential roads within 50 m buffers. We 
noted that the magnitude of the variables and, hence, their importance 
differed substantially across the cities (Fig. 4). For example, the 
Euclidean distance to the nearest continuous urban fabric in Plovdiv was 
approximately twice the magnitude found in Varna and Sofia.

Fig. 5 explains how each observation affects the XGB model pre-
dictions. Figs. 5 (and Supplementary Figure S4) display dichotomous 
distributions of the SHAP values. To capture geographic differences, we 
considered each city separately. When the variable values exceed 0, the 
SHAP values, depending on the variable, are either substantially higher 
or lower than 0 and maintain this trend throughout the remaining value 
range. Regardless of the city, it is noteworthy that the predictors 
featured positive and negative observations of noise effects, although 
the specific patterns appeared to be city-dependent. For example, the 
length of major roads within 100 m buffers related to observations that 
primarily had positive effects on noise in Burgas and Plovdiv, while in 
Varna negative SHAP values dominate. To ascertain the shape of the 
associations of the eight most important noise predictors, Supplemen-
tary Figure S4 shows SHAP dependence plots. The SHAP values of the 
length of major roads within 100 m buffers showed a positive associa-
tion up to 70 m before leveling off. The negative association between 
noise levels and the length of footways within 50 m buffers drops off 
within a short distance.

3.4. Traffic noise mapping

Fig. 6 depicts the city-specific traffic noise predictions on a 50 m grid 

using the XGB model. For comparative purposes, Supplementary 
Figures S5-S9 also show the noise surfaces based on the less-well- 
performing algorithms. The noise estimates using XGB showed that 
the model captures noise level variations effectively, particularly close 
to major roads. Traffic noise levels tended to be higher in inner cities and 
areas with manufacturing industries, commercial activities, and in-
dustry versus more rural areas.

Table 2 summarizes the proportion and number of the population 
exposed to different traffic noise levels. On average, approximately 96.8 
% of the population experienced exposure to long-term noise levels of 
>55 dB(A), but the percentage differs across cities (e.g., 83.8 % in Varna 
and 99.7 % in Plovdiv). Supplementary Figure S10 depicts the pop-
ulation’s noise level exposure estimations for various models.

4. Discussion

Long-term exposure to traffic noise has been associated with multiple 
adverse health effects (Chen et al., 2023). Such evidence relies on 
fine-grained noise exposure surfaces, which are not readily available in 
all places, including Bulgaria. Our study overcame the rigidities asso-
ciated with linear noise LURs (Aguilera et al., 2015; Chang et al., 2019; 
Gharehchahi et al., 2024; Harouvi et al., 2018; Raess et al., 2021; Xie 
et al., 2011) by developing ML-based models to estimate traffic noise.

4.1. Principal findings and available evidence

Our results showed that ensemble-based tree models demonstrated 
strong performance, with standout performance from the XGB model, 
accounting for 68.0 % of traffic noise variability. Excepting the RF 
model, XGB significantly outperformed all competing models. Unlike 
the LM, a model restricted to additive effects, tree-based models are 
well-suited for noise predictions because they effectively handle non- 
linearities and interactions across the predictors while minimizing 
model assumptions (Breiman, 2001; Chen & Guestrin, 2016). Our 
benchmark results can assist in model preselection but are not univer-
sally applicable to all LUR models, as performance is also affected by the 
type of data available and may be context-dependent.

Our results were generally consistent with the few available studies 

Fig. 2. Fit statistics across the LUR models based on four times repeated ten-fold CV with hyperparameters selected based on nested ten-fold CV. The crosses 
represent the means, and the dots represent the outliers.
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similar to ours and aligned with widely recognized benchmarks for tree 
boosting (Chen & Guestrin, 2016). In a mobile mapping study in Long 
Beach, CA, XGB outperformed acoustic models (e.g., CadnaA) in pre-
dicting noise levels (Fallah-Shorshani et al., 2022). Despite adjusting for 
traffic volume, a key noise emitter (Yin et al., 2020), the R² on a 30 % 
retained test set was comparable to our result (Fallah-Shorshani et al., 
2022). However, a study of three mid-sized European cities found that 
LUR fits relying solely on geographic information system (GIS)-based 
predictors are only negligibly smaller than when including auxiliary 
predictors collected during measurement site visits (Aguilera et al., 
2015). A study of Canadian cities that compared an RF with a LM 
resulted in a substantially lower leave-one-out cross-validated R² of 0.58 
for the RF (R²LUR=0.47) than in our study and supported our findings 
that tree-based models perform well (Liu et al., 2020). Finally, in a study 

in Sao Paulo, Brazil, the fit of a LM was also lower than our fit (Raess 
et al., 2021). Although our models relied on measurement data, which 
are not universally accessible, experiments with an end-to-end deep 
learning model to approximate noise levels from Sentinel-2 satellite 
imagery demonstrated encouraging results (RMSE≈8.2 dB), but pre-
dictions in urban areas continue to pose difficulties (Eicher et al., 2022). 
Another deep learning-based noise study achieved an overall accuracy 
of 0.89 (Staab et al., 2023). Given the differences between study sites, 
model validation (ten-fold vs. leave-one-out CV), measurement dura-
tion, and measurement type (stationary vs. mobile), close comparisons 
across the available evidence must be made cautiously.

Tree-based models can be challenging to interpret. To overcome this, 
we made the first LUR-related attempt to use SHAP values to deconstruct 
the black-box nature of ensemble models. Though computationally 

Fig. 3. In-sample comparison of predicted and measured noise levels in dB(A) at the measurement sites. The colors of the data points identify the cities where the 
measurement sites are located. The strengths of the associations are measured through the correlation coefficient squared (R2). The dashed line represents the 
regression line. The dotted line represents the 1:1 line.
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intensive, SHAP values are attractive because they are model- 
independent, resulting in a consistent predictor ranking, in contrast to 
other feature attribution approaches (e.g., gain) (Lundberg et al., 2020; 
Lundberg & Lee, 2017). In our study, the SHAP values suggested that the 
length of major roads within 100 m buffers, footways within 50 m 
buffers, residential roads within 50 m buffers, and the number of 
buildings within 50 m buffers were among the most important pre-
dictors. Given the evidence from other LUR-based noise studies, there is 
no one-fits-all predictor set. However, some similar predictors also 
appeared among the top predictors elsewhere (Fallah-Shorshani et al., 
2022). Unlike in two Canadian studies (Liu et al., 2020; Ragettli et al., 
2016), our results did not show that the presence of green space, thought 
to attenuate traffic noise (Klingberg et al., 2017), is among the most 
critical variables. This discrepancy may be due to geographic differences 
in terms of urban morphology, road network structure, or various 
possible green space operationalizations. There were two additional 
differences between our study and its predecessors. First, we quantified 
available green space using land-use data rather than using the 
normalized difference vegetation index. Second, we calculated SHAP 
values and found that the predictors are somehow non-linearly related 
to traffic noise, a fact not always considered in other LUR models 
(Aguilera et al., 2015; Chang et al., 2019; Raess et al., 2021; Xie et al., 
2011).

For our traffic noise surfaces, we observed significant differences 
across the models related to granularity, echoing prior findings 

(Fallah-Shorshani et al., 2022; Liu et al., 2020). Compared to the LM, the 
XGB model surface showed more variation, likely consequent to incor-
porating predictor interactions and non-linearities. Fine-grained noise 
maps such as ours are vital for promoting urban sustainability. For 
example, our timely analysis provides the foundation for noise-related 
health impact assessments (Khomenko et al., 2022) and identifying 
noise pollution hotspots that should be prioritized for targeted in-
terventions (e.g., installation of sound barriers). Such strategies are 
critical to attaining the 2030 target for a 30 % reduction (versus 2017) in 
Europeans chronically impacted by transport noise, as envisaged in the 
European zero-pollution action plan (European Environment Agency, 
2022). However, despite the European noise guidelines recommending 
keeping traffic noise levels below 55 dB(A) to minimize detrimental 
health effects (World Health Organization, 2018), we found that, on 
average, 96.8 % of the population in our study areas was exposed to 
long-term noise levels that exceeded this threshold, implying attendant 
increases in health risks.

4.2. Strengths and limitations

A strength of our study is the substantial number of noise measure-
ment locations over an extended period, allowing the capture of daily 
and seasonal variations by standardized protocols. Our study is one of 
the few using ML to calibrate LUR for noise assessment. Rather than 
arbitrarily selecting a single ML model (Liu et al., 2020), we evaluated 

Fig. 4. Predictor importance based on the SHAP values by city for XGB. While the SHAP values are colored by city, the underlying model is based on the pooled data. 
The plot is restricted to the eight most important predictors. The predictor relevance decreases from the top to the bottom. The abbreviations of the variables are 
provided in Table 1.
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several algorithms with different assumptions. Relatedly, we minimized 
the risk of overfitting and prevented overly optimistic performance es-
timates by rigorously tuning the hyperparameters rather than relying on 
off-the-shelf settings, which could open the possibility of inflating model 
performance. Whereas other ML-based LUR studies concentrated solely 
on predictive modeling performance (Fallah-Shorshani et al., 2022), we 
utilized Shapley values to understand our model better. By explicitly 
incorporating our measurement sites’ locational information, our 
models could account for spatial effects. Finally, we adhered to the open 
data principles and made our noise estimates public to facilitate their 
reuse in future health and health impact assessments.

Some limitations are inherent to our analyses, typical of LUR studies, 
including ours. While our noise metric only accounted for daytime 
(Lday), it can be adjusted to reflect the average sound level over a 24- 
hour period by adding a 5 dB penalty for evening hours (19:00 to 
22:00 h) and a 10 dB penalty for nighttime hours (22:00 to 07:00 h) 
using an empirically derived conversion term (Brink et al., 2018). While 
we focused on four well-established ML algorithms within the exposure 
assessment field, we emphasize that other ones, some of which may 
perform better, are available (Fernández-Delgado et al., 2014; Hage-
nauer et al., 2019; Sekeroglu et al., 2022). Our noise model does not 
depend on the physics of acoustics, which likely restricts its trans-
ferability to other cities. Although there is no universally accepted 
predictor set, a limitation is the lack of additional explanatory variables 
suspected to be associated with noise, although our model achieved a 

good fit compared to others with traffic volume data (Fallah-Shorshani 
et al., 2022). As our primary source of predictors, we used 
crowd-sourced OpenStreetMap data, which is susceptible to data quality 
issues (Arsanjani et al., 2015). Thus, we cannot exclude the possibility of 
inaccuracies in that data. However, OpenStreetMap has proven to be a 
reliable data source of high positional accuracy (Helbich et al., 2012), 
often used in LUR studies (Raess et al., 2021; Staab et al., 2022). Our 
measurements and land-use data were temporally misaligned. We 
believe, however, that the consequence for our LUR models was negli-
gible since land-use dynamics, especially in cities, tend to be stable over 
timespans as short as five years. Finally, our grid-based noise predictions 
may induce some inaccuracies due to small-scale spatial variability of 
noise levels (e.g., two street segments in close proximity may have 
different noise levels despite falling within the same cell).

5. Conclusion

We rigorously compared ML algorithms for estimating long-term 
traffic noise levels across the five largest Bulgarian cities, for which 
detailed noise estimates were unavailable. Our XGB model explained 
68.0 % of the noise variation, slightly superior to RF and significantly 
better than SVR, ENet, and LM. Given the XGB model’s high flexibility 
and superior performance, in combination with the ability to use SHAP 
values for model insights, we recommended the XGB model for future 
noise mappings when acoustic model data are unavailable. Linking the 

Fig. 5. Distribution of SHAP values by feature and city for XGB. While the SHAP values are stratified by city, the underlying model is based on pooled data. The color 
gradient indicates the normalized predictor values. Predictors are in descending order of importance. Positive SHAP values indicate a positive effect on noise, and 
negative ones have a negative effect. The higher the SHAP value, the stronger the effect. The abbreviations of the variables are provided in Table 1.
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noise estimates to population data, we found that 96.8 % of the urban 
population was at risk of experiencing harmful traffic noise. Our 
spatially resolved noise surfaces are openly available and provide op-
portunities for reuse in epidemiological studies assessing noise effects on 
human health. Policymakers can access the maps in support of devel-
oping new mitigation strategies for combatting exposure to traffic noise.
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Table 2 
Estimated proportion and number of the population exposed to different traffic 
noise levels in total and stratified by city. The estimates rely on the XGB noise 
predictions.

dB 
(A)

Population 
affected  
(%/total)

Population affected per city (%/total)

Burgas Plovdiv Ruse Sofia Varna

>40 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
 2112,821 188,889 321,962 124,102 1171,247 306,621
>45 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 99.9 %
 2112,577 188,886 321,959 124,102 1171,247 306,383
>50 99.4 % 99.7 % 100.0 % 99.8 % 99.8 % 96.8 %
 2100,263 188,375 321,915 123,910 1169,342 296,721
>55 96.8 % 99.4 % 99.7 % 97.9 % 98.9 % 83.8 %
 2045,116 187,707 321,077 121,555 1157,854 256,923
>60 81.8 % 93.6 % 97.3 % 90.6 % 83.7 % 47.5 %
 1728,041 176,859 313,260 112,448 979,749 145,725
65 24.9 % 48.0 % 58.3 % 25.9 % 16.7 % 6.6 %
 525,776 90,654 187,600 32,085 195,191 20,246
>70 1.6 % 6.8 % 5.5 % 0.3 % 0.1 % 0.1 %
 32,859 12,778 17,734 355 1589 403
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