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A B S T R A C T

Introduction: Outdoor nighttime light (NTL) is a potential anthropogenic stressor in urban settings. While
ecological studies have identified outdoor NTL exposure disparities, uncertainties remain about disparities in
individual exposure levels, particularly in Europe.
Aim: To assess whether some populations are disproportionately affected by outdoor NTL at their residences in
urban Bulgaria.
Methods: We analyzed 2023 data from a representative cross-sectional survey of 4,270 adults from the five largest
Bulgarian cities. Respondents’ annual exposures to outdoor artificial nighttime luminance were measured using
satellite imagery and assigned at their places of residence. We calculated the Gini coefficient as a descriptive NTL
inequality measure. Associations between respondents’ NTL exposure levels and sociodemographic character-
istics were assessed by estimating quantile mixed regression models. Stratified regressions were fitted by gender
and for each city.
Results: We found moderate distributive NTL inequalities, as indicated by a Gini coefficient of 0.214. Regression
analyses showed associations between greater NTL exposure and higher educational attainment. Respondents
with incomes perceived as moderate experienced less NTL exposure at the 0.5 and 0.8 quantiles, while unem-
ployed respondents experienced lower exposure at the 0.2 and 0.5 quantiles. We observed null associations for
the elderly and non-Bulgarian ethnicities. Regardless of the quantile, greater population density was associated
with higher NTL levels. Stratification by sex did not yield substantial differences in the associations. We observed
notable city-specific heterogeneities in the associations, with differences in the magnitudes and directions of the
associations and the NTL quantiles.
Conclusions: NTL exposures appeared to embody an environmental injustice dimension in Bulgaria. Our findings
suggest that some sociodemographic populations experience higher exposure levels to NTL; however, those are
not necessarily the underprivileged or marginalized. Identifying populations with high exposure levels is critical
to influencing lighting policies to ease related health implications.
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1. Introduction

Environmental justice research has established that environmental
hazards and amenities are frequently unequally distributed along soci-
odemographic gradients (Corburn, 2017; Mohai et al., 2009). Margin-
alized people tend to be disproportionately exposed to hazards and
benefit less from amenities compared to advantaged population groups
(Evans and Kantrowitz, 2002). For example, a meta-analysis has shown
that lower-income earners live in places with less urban forest cover
(Gerrish and Watkins, 2018). Similarly, systematic reviews have docu-
mented that the economically and socially marginalized experience
disproportionately more air pollutants (Hajat et al., 2015) and
transport-related noise (Trudeau et al., 2023).

Although artificial light at night has benefits (e.g., increased safety or
commercial activity) (Boyce, 2019), nighttime light (NTL) (i.e., exces-
sive artificial brightness from streetlights, billboards, or the illumination
of buildings), particularly in urban areas, is also among the
human-caused disturbances challenging both ecosystems (Gaston and de
Miguel, 2022) and human health (Linares Arroyo et al., 2024; Zie-
linska-Dabkowska et al., 2023). Current estimates of NTL levels suggest
that 99% of Europeans are affected (Falchi et al., 2016). Studies have
associated NTL overexposure with adverse health effects, including
sleep problems (Y.-X. Xu et al., 2023), overweight and obesity (Lai et al.,
2020), mental disorders (Tancredi et al., 2022), and breast cancer (Wu
et al., 2021). However, not everyone may be affected equally by outdoor
NTL; consequently, differences in exposure levels may exist and poten-
tially reinforce health inequalities. Given an approximately 10% annual
rise in night sky brightness (Kyba et al., 2023), there is an urgent need to
assess possible excessive exposure to NTL in specific populations.

NTL has received little recognition as an environmental justice issue.
While a few studies have mapped area-level variations within and across
countries (Falchi et al., 2019), to our knowledge, even fewer studies
have analyzed sociodemographic differences in NTL exposure (Chen
et al., 2022; Nadybal et al., 2020; Xiao et al., 2023a, 2023b). For
example, an early area-level study in the United States substantiated that
exposure to ambient light at night was considerably higher among
ethnic minority neighborhoods and low-to-mid socioeconomic status
neighborhoods (Nadybal et al., 2020).

Although the evidence base regarding differences in NTL exposures
provides significant insights, the state-of-the-art is not well developed in
three respects. First, existing studies have primarily dealt with the
United States (Motairek et al., 2023; Nadybal et al., 2020; Xiao et al.,
2023b), and the results can, at best, only be partially extrapolated to
Europe, where urban settlements tend to be more compact. Moreover,
the literature lacks studies on NTL from Eastern Europe, a region where
environmental health research is still in its early stages. Second,
regardless of the country, existing studies were ecological (Chen et al.,
2022; Nadybal et al., 2020; Xiao et al., 2023a). It is well-established that
such study design is notoriously prone to confounding due to a lack of
person-level characteristics (Wakefield, 2008). Such area-level studies
are also vulnerable to the modifiable areal unit problem (Openshaw,
1981), possibly rendering statistical inferences uncertain due to issues
with underlying spatial scales and zoning (Tian et al., 2024). Third,
while there is not as yet any consensus established regarding how to best
model differences in exposure levels (Casey et al., 2023), ordinary mean
regression estimates assuming that covariates are associated with the
conditional distribution of the outcome (i.e., NTL) through its mean are
frequently reported (Cade and Noon, 2003; Koenker and Bassett Jr,
1978); however, there are no credible grounds offered in environmental
justice research for their use (Helbich et al., 2018; Tonne et al., 2018).
Yet, it is reasonable to suppose that the effect sizes of people’s socio-
demographic characteristics depend on heterogeneous variations of the
response distribution.

In response to the scarcity of European studies investigating differ-
ences in outdoor NTL exposure between population groups, along with
methodological concerns of previous research, we aimed to 1) examine

possible person-level sociodemographic differences in NTL at residence
and 2) assess whether the associations vary across different nightlight
quantiles using a representative environmental health survey among
urban adults in Bulgaria, one of Europe’s poorest countries (Eurostat,
2023). We generated two hypotheses. First, echoing injustice debates,
we speculated that the less well-off experienced higher NTL levels.
Second and unlike previous studies (Nadybal et al., 2020; Xiao et al.,
2023a), we hypothesized that the strengths of the associations differed
across the NTL distribution, specifically, that those in upper NTL expo-
sure quantiles might be affected to a greater extent than those in lower
quantiles. Understanding environmental NTL across sociodemographic
gradients is essential for advancing the Sustainable Development Goals
(United Nations, 2016), which emphasize diminishing disparities and
ensuring inclusivity (Ganzleben and Kazmierczak, 2020).

2. Materials and methods

2.1. Study area

Our study area includes the five largest cities in Bulgaria (Supple-
mentary Fig. S1). We included the capital Sofia (≈1,249,000 in-
habitants), Plovdiv (≈347,000 inhabitants), Varna (≈333,000
inhabitants), Burgas (≈203,000 inhabitants), and Ruse (≈145,000 in-
habitants). Sofia is a compact city dealing with excessive lighting at
various locations, such as the nearby airport and historic boulevards.
Plovdiv is situated more centrally in Bulgaria and features a compact
urban layout with tall residential buildings and well-lit historical land-
marks. Varna and Burgas are situated on the Black Sea Coast and are
seaside resorts with relatively high NLT levels. Ruse is in the northeast,
where NTL is generated from extensive parking lots for heavy vehicles.

2.2. Population sample

This study encompassed a cross-sectional sample of adults from the
general population of the five cities. We used stratified sampling to ac-
quire a representative sample of each city’s population and its socio-
demographic characteristics while ensuring participants’ residential
addresses had adequate environmental variability related to traffic-
related air pollution and noise (≥/<50 m of a major road), air pollu-
tion from domestic heating or cooking (≥/<100 m Euclidean distance to
≥10 households registered as using fossil fuel for heating), and green
space (≥/< 300 m of a green urban area) as practice elsewhere
(Dzhambov et al., 2023).

A survey company recruited participants under the research team’s
supervision between August and October 2023. Interviewers received
training before conducting the fieldwork. Eligibility criteria for partic-
ipants were that they had to be at least 18 years old, live in a private
household (e.g., not in a prison or in a care home), and live at their
residential address for at least a year. Fieldworkers interviewed partic-
ipants at home on their demographics and physical and mental health
outcomes. In total, 4,640 respondents were recruited (1,512 from Sofia,
1,012 from Plovdiv, 1,001 from Varna, 655 from Burgas, and 460 from
Ruse). Response rates varied from 30.22% in Sofia to 58.40% in Plovdiv,
with an overall average of 42.51%. The Ethics Committee of the Medical
University of Plovdiv approved the study protocol (Protocol N◦ 4/May
04, 2023, Opinion N◦ Р-1253/May 17, 2023).

2.3. Nighttime light exposure as the outcome

Remote sensing imagery allowed the assessment of inequalities in
outdoor NTL exposure (Linares Arroyo et al., 2024; Sayyed et al., 2024).
We acquired global calibrated nighttime radiance measurement data
utilizing the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/-
Night Band instrument aboard the Suomi National Polar-orbiting Part-
nership satellite (Miller et al., 2012; Zhao et al., 2019). The VIIRS sensor
is sensitive to low visible/near-infrared NTL levels. Gridded VIIRS

M. Helbich et al.



Environmental Research 262 (2024) 119803

3

images have a resolution of approximately 464 m with a lower light
detection limit than first-generation NTL composites, while the VIIRS
images are also not affected by saturation (Elvidge et al., 2013; Levin
et al., 2020). NTL emissions vary seasonally; thus, we used average
radiance composite images capturing annual NTL levels (in nW/cm2/sr)
(Kyba et al., 2015). The 2022 ‘VCMSLCFG’ image collection in Google
Earth Engine (Gorelick et al., 2017) provided the VIIRS nightlight data
via the National Oceanic and Atmospheric Administration filtered to
eliminate, for example, stray light and cloud cover (Román et al., 2019).

We linked the NTL data to the survey data via respondent’s resi-
dential locations. The residential addresses were geocoded by the in-
terviewers using global positioning system devices. In the case of <10
addresses, accuracy assessments revealed uncertainties in geocoding,
with those address coordinates being manually adjusted based on
auxiliary data, such as from the cadaster. We centered buffers on the
respondents’ home addresses to model their immediate and expanded
spatial contexts. We used circular buffers on the respondents’ home
addresses to model their immediate and expanded spatial contexts. We
used focal statistics to compute mean NTL levels. Guided by prior ana-
lyses (Helbich et al., 2020), we determined the average radiance level
value for the 100 m, 500 m, and 800 m buffers after downsampling the
original VIIRS raster layer resolution to 10 m employing bilinear inter-
polation. No missing values occurred after assigning the NTL levels at
people’s home locations. After examining the summary statistics of the
NTL data, no outliers were present. Supplementary Fig. S2 summarizes
the workflow.

2.4. Covariates

Survey data from 2023 provided self-reported socio-demographic
information on each participant. Prior exposure inequality studies have
routinely used variables similar to those in our study (Tonne et al.,
2018). We reclassified age into a dummy variable representing whether
the person was considered elderly (>65 years). We deemed the elderly
at high risk and physiologically more vulnerable to environmental
stressors (Mechanic and Tanner, 2007). A few previous studies had
speculated that non-native populations experience higher levels of
exposure (Mohai et al., 2009); the survey data distinguished five groups:
Bulgarians, Turks, Roma, Armenians, and others. Due to the low fre-
quencies in categories other than Bulgarian (1.7% Turks, 1.6% Roma,
and 0.5% Armenians), we collapsed the ethnic groups into Bulgarian
and others. Since socio-economic vulnerability is multifaceted and no
uniform measure exists (Evans and Kantrowitz, 2002; Galobardes et al.,
2007), we used three dimensions. The first captured perceived total
monthly household incomes. The six original income categories, ranging
from very difficult to very easy, were regrouped into difficult, moderate,
and easy. The second captured respondents’ highest educational
attainment reclassified into primary education not completed/com-
pleted, secondary education completed, and higher education
completed. Aggregating primary education was necessary due to the
scarcity of respondents who had not completed primary education,
resulting in that category being underpopulated (<0.5%). The third was
a dummy variable indicating whether a respondent was employed.
Finally, as NTL levels act as a proxy variable for the degree of urbani-
zation (Zhang and Seto, 2011), we also included a population estimate
within 100, 500, and 800 m buffers (divided by 1000) for 2021, as done
previously (Nadybal et al., 2020). For stratified analyses, we also used
the respondent’s sex (male, female).

2.5. Statistical analysis

We employed summary statistics to describe the study sample. We
used the Chi2 tests to assess differences in NTL levels across socio-
demographic groups. Furthermore, we assessed individual-level NTL
disparities using the Gini coefficient, as provided in the giniVarCI R
package (Muñoz et al., 2023). The Gini index ranges from 0 to 1 and was

derived from the Lorenz curve illustrating the cumulative NTL distri-
bution. A Gini value of zero signifies perfect equality; higher values
indicate increasingly pronounced inequality. In our study, this signified
that a smaller fraction of participants experienced a larger share of total
NTL exposure (Cowell, 2011). We conducted 500 percentile bootstrap
replications to obtain the Gini index’s confidence intervals (CI) (Muñoz
et al., 2023).

Since the absence of multicollinearity is critical to obtaining reliable
regression effect estimates, we calculated variance inflation factors
(VIFs) for the mixed mean regression. VIF values above five were
indicative of collinearity issues among the covariates. We regressed our
response variable NTL levels on sociodemographic covariates using
linear quantile mixed models (Geraci and Bottai, 2014), assuming a
Gaussian link function. A quantile mixed regression model allows the
assessment of covariate associations for any quantile within the response
distribution rather than only the mean (Cade and Noon, 2003). Since we
were interested in possibly heterogeneous associations between the
lower and higher NTL exposure extremes, we fitted regressions for the
0.2, 0.5, and 0.8 quantiles of the NTL distribution. The 0.5 quantile
permitted comparisons with prior scholarship (Nadybal et al., 2020;
Xiao et al., 2023a). Whether our hierarchical data structure (i.e., re-
spondents were nested in cities) required a mixed model design was
tested by fitting a null model with a city-specific random intercept (with
no covariates) and computing intraclass correlation coefficients (ICCs)
for each quantile (Bliese, 2000).

We fitted two models with differing adjustment levels in our primary
analyses. The first included person-level characteristics, such as senior
status, ethnicity, education, employment, and income (Model 1). Model
2 additionally adjusted for neighborhood-level population density. As a
secondary analysis, Model 2 was fitted for each city separately. To assess
the sensitivity of the models regarding the exposure assessment based on
500 m buffers, we 1) refitted the models with 100 m and 800 m buffers,
2) stratified the entire dataset by sex, and 3) refitted the pooled Model 2
based on the original NTL data without resampling. The coefficients for
each regression quantile were reported, with confidence intervals (CIs)
based on 500 bootstrap replications. The analyses were conducted in the
R-4.3.2 environment (R Core Team, 2024), and the models were fitted
through the lqmm package (Geraci, 2014).

3. Results

3.1. Sample description

Of the 4,640 participants, 365 (7.9%) had one or more relevant
variables with missing data, and five had lived at their residence for less
than 12 months. As a result, these 370 participants were excluded from

Table 1
Sample characteristics (N = 4,270).

Number of people (%)

Elderly = yes (%) 1,039 (24.3)
Ethnicity = other (%) 171 (4.0)
Education (%)

Primary education not completed/completed 210 (4.9)
Completed secondary education 2,435 (57.0)
Completed higher education 1,625 (38.1)
Unemployed = yes (%) 161 (3.8)

Perceived income situation (%)
Difficult 935 (21.9)
Moderate 2,943 (68.9)
Easy 392 (9.2)
Sex = female (%) 2,352 (55.1)

City
Ruse 439 (10.3)
Burgas 590 (13.8)
Plovdiv 944 (22.1)
Varna 969 (22.7)
Sofia 1,328 (31.1)
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the study. The final analytical sample we used included 4,270 re-
spondents. Table 1 summarizes the characteristics of the study popula-
tion. Approximately half were female, and a quarter were older than 65.
Most respondents were Bulgarians who had completed at least second-
ary education and perceived their income level as moderate.

3.2. Exposure distributions

Fig. 1 shows the annual NTL concentrations for each city. Unless
noted otherwise, 500 m buffers overlaid on respondents’ home ad-
dresses were used to assess NTL exposure. The respondents’ overall
mean outdoor NTL levels were 36.151 nW/cm2/sr with a standard de-
viation (SD) of ±13.968 for the 500 m buffers. The exposure distribution
varied substantially across the cities in our sample, with the highest
mean exposure levels in Varna (43.7; SD ± 14,909) followed by Plovdiv
(37.2; SD ± 11.496), Sofia (36.4; SD ± 12.851), Burgas (30.9; SD ±

10.968), and Ruse (20.3; SD ± 5.792) (Fig. 2). Supplementary Fig. S3
shows the Lorenz curve. The result indicated that the observed Lorenz
curve deviated moderately from the line of an equal NTL distribution,
while the Gini index was 0.214 (CI = 0.210; 0.219). Both results sug-
gested moderate distributive NTL inequalities.

Fig. 3 shows the NTL distributions for each sociodemographic co-
variate. With some exceptions, including ethnicity, education, and

income, the exposure distributions do not significantly deviate across
individual-level characteristics. Results remained similar when addi-
tionally stratified by NTL tertile (Table 2). We observed significant dif-
ferences (p < 0.05) based on Chi2 tests for ethnicity, education, and
income. The descriptive statistics exhibited comparable magnitudes and
distributions for the 100 m and 800 m buffers (results not shown).

3.3. Pooled regression analyses

The observed VIF values were less than two, indicating no covariate
multicollinearity in the mixed mean regression. The quantile-specific
ICCs of the null model were moderate (0.2 quantile value: 0.081; 0.5
quantile: 0.112) while still supporting consideration of a random city-
specific intercept, especially for the upper quantile (ICC = 0.203) (Bli-
ese, 2000). Regardless of the quantile, the AIC scores decreased sub-
stantially with increasing model adjustment, suggesting that Model 2,
based on 500 m buffers, achieved the best goodness-of-fit (Supplemen-
tary Table S1). Fig. 4 summarizes the primary analyses’ estimated as-
sociations between NTL and sociodemographics. Supplementary
Table S2 provides numeric results. Adding population density to Model
1 attenuated the effect estimates in Model 2, regardless of the quantiles.
The magnitudes of the model estimate differed across quantiles and in
significance.

Fig. 1. Annual nighttime light concentrations across the five largest Bulgarian cities based on VIIRS data. Cells colored in light gray indicate waterbodies and/or
where outside the study areas. The gray points refer to the respondents’ address locations.

M. Helbich et al.
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Respondents who had, at minimum, completed secondary school
education had greater NTL exposure than those with lower educational
attainment at the 0.5 and 0.8 quantiles; the association was null for the

0.2 quantile. Those who had completed higher education showed more
pronounced effect sizes. Independent of the quantile, the association
between NTL exposure and the elderly was negative and insignificant.

Fig. 2. City-specific nighttime light exposure distribution.

Fig. 3. Nighttime light exposures for the 500 m buffer stratified by the covariates. The dots represent means. Not shown in the boxplots are observations beyond the
end of the whiskers.

M. Helbich et al.
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Likewise, there was an insignificant association between NTL exposure
and non-Bulgarian populations. We observed null associations across all
quantiles between NTL exposure and those who perceived their income
as easy. Unlike those who perceived their income as difficult, those with
moderate self-perceived income difficulties had lower NTL exposure
levels at the 0.5 and 0.8 quantiles. Unemployment was inversely asso-
ciated with NTL exposure levels for the 0.2 and 0.5 quantiles and
insignificant at the 0.8 quantile. Population density was robustly asso-
ciated with higher NTL exposure across all quantiles, with a slightly
stronger effect size for the 0.8 quantile.

3.4. City-specific regression analyses

Our secondary analyses showed notable differences when fitting city-
specific models (Fig. 5; for numeric results, see Supplementary
Table S3). We observed heterogeneous associations with perceived in-
come situations. While high-income respondents in Ruse and Varna
faced lower NTL exposure across the quantile than those facing income
difficulties, the reverse appeared in Plovdiv, and the associations were
primarily null elsewhere. The tendency observed in the pooled data
(Fig. 4), where respondents with higher educational attainment faced
higher levels of NTL exposure, was also evident in Ruse, Plovdiv, and
Varna for the median and upper quantile. The elderly were less exposed
to NTL than other adults in Ruse, a result that was not apparent else-
where. In Plovdiv and Varna, we observed that non-Bulgarians had
greater NTL exposure than Bulgarians across the three quantiles, while
in the remaining cities, the associations were null. In contrast to the
pooled model, employment status did not reach statistical significance.
Population density was positively associated with NTL levels, irre-
spective of quantile and city, though the magnitude of the effect size
differed.

3.5. Sensitivity analyses

Our sensitivity tests confirmed that overall results were robust
against changes in the neighborhood specification from the 500 m buffer
to the 100 or 800 m buffers (Supplementary Figs. S4 and S5). After
stratification by sex, the estimates replicated the results of the pooled
model in our primary analyses (Supplementary Figs. S6 and S7). Refit-
ting Model 2 using the NTL data with the original resolution resulted in
minor changes (Supplementary Table S4). For example, compared to the
main model (Fig. 4), unemployment in the 0.2 quantile turned border-
line significant. In the 0.5 quantile, the elderly turned from weakly to

significantly associated. The results for the 0.8 quantile remained un-
changed. Changing the buffer sizes to 100 and 800 m in the city-specific
models did not lead to significant differences in the estimated associa-
tions (Supplementary Figs. S8 and S9).

4. Discussion

Artificial NTL is a growing public urban health issue (Zielinska--
Dabkowska et al., 2023). As with other environmental threats (Gerrish
and Watkins, 2018; Hajat et al., 2015; Trudeau et al., 2023), specific
populations may be disproportionately burdened and vulnerable to
nighttime light exposure. In our multi-city study of 4,270 adults in urban
Bulgaria, we examined disparities in NTL exposure at the individual
level.

4.1. Principle findings and interpretation given the available evidence

Our individual-level results were not directly comparable to results
from other studies as the existing evidence on disparities in NTL expo-
sure was ecological (Motairek et al., 2023; Nadybal et al., 2020; Xiao
et al., 2023a). Our descriptive results revealed that NTL levels vary
substantially geographically, with the highest levels of NTL occurring in
the coastal city of Varna, where the tourism season remained active
throughout the first half of the survey, and the lowest in Ruse. A pre-
vious small-area study in the United States also reported that urban and
coastal areas face pronounced NTL (Xiao et al., 2023a).

Our regressions revealed partial disparities along the sociodemo-
graphic gradient, with some aligning with our hypotheses and others
not. We observed greater NTL exposure levels among people with higher
educational attainment compared to those with completed/uncom-
pleted primary education, while those who perceived their income sit-
uations as moderate experienced less NTL exposure than those facing
difficult income situations. It is not feasible to compare these education-
related findings with others because we are unaware of any other NTL
study that used education as a proxy for socioeconomic status. In
Bulgaria, it is not necessarily the case that those with high educational
attainment belong to the high-income group (Bratoeva-Manoleva, 2017)
and often reside in densely populated mixed-use neighborhoods or
high-rise residential complexes in intermediate and peripheral areas. By
contrast, our results on income differ from those of earlier work. For
example, another census tract-based study in the continental United
States found that mid-household income tracts faced higher NTL expo-
sure (Nadybal et al., 2020), while low and high-income tracts were

Table 2
Nighttime light exposure for the 500 m buffer stratified across tertiles and covariates.

Low NTL (1st tertile) [2.42,31.26) Moderate NTL (2nd tertile) [31.26,40.64) High NTL (3rd tertile) [40.64,98.43] p-value

Ethnicity 0.012
Bulgarian 1,351 (94.9%) 1,382 (97.1%) 1,366 (95.9%)
Other 72 (5.1%) 41 (2.9%) 58 (4.1%)

Education <0.001
Primary educ. not completed/compl 97 (6.8%) 67 (4.7%) 46 (3.2%)
Completed secondary educ. 843 (59.2%) 801 (56.3%) 791 (55.5%)
Completed higher educ. 483 (33.9%) 555 (39.0%) 587 (41.2%)

Unemployed 0.387
No 1,370 (96.3%) 1,376 (96.7%) 1,363 (95.7%)
Yes 53 (3.7%) 47 (3.3%) 61 (4.3%)

Income <0.001
Difficult 342 (24.0%) 269 (18.9%) 324 (22.8%)
Moderate 943 (66.3%) 1,055 (74.1%) 945 (66.4%)
Easy 138 (9.7%) 99 (7.0%) 155 (10.9%)

Elderly 0.397
no 1,059 (74.4%) 1,088 (76.5%) 1,084 (76.1%)
yes 364 (25.6%) 335 (23.5%) 340 (23.9%)

Sex 0.582
Male 624 (43.9%) 651 (45.7%) 643 (45.2%)
Female 799 (56.1%) 772 (54.3%) 781 (54.8%)

Note: Chi2 tests assessed differences across tertiles for categorical variables.
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associated with less NTL, suggesting a non-linear effect. Detrimental
exposures, including NTL, in more deprived US areas are possibly a
legacy of historic redlining (Lee et al., 2022; Motairek et al., 2023).
Opposed to our hypothesis, the unemployed experienced lower NTL
levels at low to moderate exposure magnitudes. Although not univer-
sally the case, we speculate that more affluent populations experience
greater NTL exposure, have more financial means, opt to live in presti-
gious central (and historical) neighborhoods, and thus benefit from
enhanced accessibility to workplaces, cultural amenities, and commer-
cial services, while having the financial means to minimize indoor
exposure to NTL. Significantly lower levels of NTL annoyance reported
by high-income earners, as supported in our post hoc analysis by a sig-
nificant Chi2 test (p < 0.001), support this speculation. By contrast,
unemployed people often have lower socioeconomic status and reside in
remote, less appealing neighborhoods, frequently accommodating other
land use activities requiring less nighttime illumination.

We observed null NTL differences between the elderly versus the
non-elderly and between those of non-Bulgarian ethnicity versus Bul-
garians. The finding that minorities experience similar levels of exposure
to NTL is in contradistinction to the two available US studies (Nadybal
et al., 2020; Xiao et al., 2023a). For example, census tracts with higher
proportions of non-native residents (e.g., Black, Hispanic, and Asian
populations) had higher NTL exposure levels (Nadybal et al., 2020).
Note that, due to a low frequency of non-Bulgarians in our complete
sample (3.8%), we aggregated those ethnic groups for statistical reasons,
possibly hiding such associations at the expense of minority groups.

Despite data aggregation across ethnic groups, the statistical power to
detect between-group differences remained low. Regarding urbanicity,
the positive association between population density and NTL was
congruent with our expectations, mirroring previous scholarship
(Nadybal et al., 2020) and attributable to an increased level of economic
activities, which often go hand-in-hand with higher radiance levels in
high-density areas (Zhang and Seto, 2011).

Synthesizing the available within-city results suggested that they
mostly confirmed what had been reported by similar analyses.
Congruent with others (Peris and Arguelles, 2023), the results show
more complex and differentiated patterns of sociodemographic in-
equalities when looking at the cities individually rather than analyzing
the cities in aggregate. Moreover, as was the case elsewhere (Helbich
et al., 2018; Tonne et al., 2018), for some sociodemographics (e.g., ed-
ucation and income), we noticed varying associations in magnitudes
across low, mid, and high NTL exposure quantiles. These were only
partially captured by applying regressions to the mean as typically
applied in environmental justice scholarship (Casey et al., 2023). These
results suggest that localized strategies to combat NTL disparities are
vital to achieving equal and sustainable cities.

These observed NTL exposure disparities may disproportionately
affect overexposed and vulnerable sociodemographic groups, poten-
tially increasing health disparities. While still a matter of debate, NTL
exposure has been linked to circadian rhythms becoming desynchron-
ized from diurnal environmental changes, partially caused by suppres-
sion of melatonin production. Tentatively, this desynchronization of

Fig. 4. Associations between nighttime light at the place of residence and sociodemographics for the 0.2, 0.5, and 0.8 quantiles. Point estimates and the CIs obtained
through 500 bootstrap replications are reported. Effects were estimated using linear mixed quantile regressions. We adjusted for sociodemographics in Model 1 and
further adjusted for population density in Model 2. The reference categories were as follows: a) primary education not completed/completed, b) no elderly person, c)
Bulgarian, d) difficult self-perceived income situation, and e) employed. The values ‘0.2’, ‘0.5’, and ‘0.8’ refer to the 0.2, 0.5, and 0.8 regression quantile estimates.
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circadian rhythms is related to poorer health outcomes (Tähkämö et al.,
2019). For example, a meta-analysis has shown a 12% higher risk for
breast cancer for the most versus the least exposed to NTL in outdoor
environments and a 13% higher risk in indoor environments (Lai et al.,
2021). Similarly, increased nightlight exposure has been related to a
22% higher prevalence of sleep issues (Y.-X. Xu et al., 2023), a 21%
higher risk of cardiometabolic disease (Y. Xu et al., 2023), and increased
mental disorder risks (Tancredi et al., 2022).

4.2. Strengths and limitations

This study possesses multiple strengths. In contrast to prior envi-
ronmental injustice research (Hayward and Helbich, 2024), our study is
one of the few that analyzed disparities in outdoor NTL exposure; to our
knowledge, it is the first dealing with NTL exposure at the individual
level and offers more nuanced results than the ecological studies con-
ducted previously (Xiao et al., 2023a). Regardless of the study design,
while previous scholarship centered on North America (Nadybal et al.,
2020; Xiao et al., 2023a), we relied on Eastern Europe, where NTL tends
to be lower but is rising (Falchi et al., 2019). Our analysis benefited from
using the first representative health survey data of the five largest
Bulgarian cities. Another notable advancement is our exposure assess-
ment. We obtained actual residential addresses, enabling us to use
home-based exposure assessments instead of assigning NTL exposures
based on administrative units previously known to have conceptual
deficits. A methodological strength of our analysis was that we tran-
scended the rigidity of regressions to use the mean (Geraci and Bottai,

2014). Our quantile regressions offered a more detailed depiction of how
peoples’ sociodemographics relate to NTL.

Some caveats must be acknowledged, as with all studies, along with
recommendations for future research. First and foremost, NTL estimates
were assessed through moderate-resolution satellite imagery (Levin
et al., 2020; Zhao et al., 2019), potentially overlooking small-scale
variations in NTL (e.g., emitted from localized sources such as street-
lights) and underestimated visual NTL (Harding et al., 2024). As the
geographic coverage of new satellites increases (e.g., Jilin-1 with its ~1
m resolution), such high-resolution instruments will become feasible
alternatives (Xu et al., 2022). Currently, however, VIIRS imagery is
widely accessible, allowing the reproduction of studies in various con-
texts and strengthening the knowledge base concerning disparities in
NTL (Sayyed et al., 2024). Future studies may also downscale the
moderate-resolution VIIRS data based on auxiliary land use data. Sec-
ond, for privacy-related reasons, we only had data available on
perceived income situations, likely an imperfect measure of people’s
socioeconomic conditions (Galobardes et al., 2007). Third, similar to
ours, environmental justice studies usually assess exposures one at a
time. While unfavorable exposures typically co-occur (Hankey and
Marshall, 2017), scholarship considering synergistic and competing ef-
fects is warranted to capture possible multi-environmental jeopardy
(Doiron et al., 2020). Fourth, some socio-demographics that were found
elsewhere to be related to NTL were insignificant in our case. We would
like to emphasize that this may be due to power issues because some
covariate classes had few observations. Finally, our study was
cross-sectional and not meant to provide insights into causalities. Future

Fig. 5. City-specific associations between nighttime light at the place of residence and sociodemographics for the 0.2, 0.5, and 0.8 quantiles. Point estimates and the
CIs obtained through 500 bootstrap replications are reported. Effects were estimated using linear quantile regressions. Fig. 3 provides the reference categories. Cities
are ranked by increasing mean nightlight levels. The values ‘0.2’, ‘0.5’, and ‘0.8’ refer to the 0.2, 0.5, and 0.8 regression quantile estimates.
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studies are encouraged to adopt longitudinal designs to attain a more
causal understanding and time trends of disparities in NTL exposure to
alleviate this limitation (Xiao et al., 2023b).

5. Conclusions

NTL generated by human activities is a growing health concern.
However, as our study of urban Bulgaria suggested, this burden is, at
least in part, unevenly distributed across urban populations, possibly
widening health inequalities. In addition to geographic variations across
the cities we studied, we found that some sociodemographic populations
experienced disproportionate NTL exposures. The stratified models for
each city elucidated more complex patterns and heterogeneous associ-
ations. To tackle the root causes of these NTL disparities and to realize
healthy and equitable societies, it appears critical to foster nuanced
policy measures that transcend generic, uniform NTL mitigation stra-
tegies centering on local circumstances. Further individual-level ana-
lyses of other cities, similar to our pioneering study, are warranted to
build a more solid evidence base, ideally anchored by longitudinal data.
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