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Greenspace can promote health via diverse pathways. A common approach to assessing greenspace exposure is to 
estimate vegetation availability within buffers surrounding locations where people reside or spend time. However, no 
clear framework for informed buffer selection exists, and choices made show considerable heterogeneity, impeding 
evidence synthesis and causal inference. In this Personal View conducted by an interdisciplinary panel of experts, we 
aimed to establish a framework for informed buffer selection for epidemiological studies on greenspace. We began 
by reviewing available approaches for the selection of buffer types, which range from single fixed-location approaches 
to high-resolution mobility-based activity-space approaches, as well as different buffer sizes. We then summarised 
the determinants of buffer type and size selection including health outcomes and underlying mechanisms, study 
population, contextual factors, and data characteristics. Finally, based on these determinants, we developed recom-
mendations for future research. Buffer type and size selection should be hypothesis driven, reflecting presumed 
greenspace–health mechanisms. Buffer selection should target activity-based approaches where feasible, and mul-
tiple buffer sizes should be tested. Overall, the assessment of greenspace exposure should shift from ad-hoc 
approaches to personalised, multiscale, and context-specific methods. We call for standardising and reporting the 
rationale for buffer selection to minimise bias and enhance comparability and evidence synthesis across studies.

Introduction
The relationship between natural environments and 
human health has gained increasing recognition in recent 
decades, with accumulating evidence showing that green 
spaces promote both mental and physical wellbeing via 
multiple interconnected pathways. 1–3 These mechanisms 
include mitigating environmental hazards such as air pol-
lution and extreme heat, 4–6 reducing stress and buffering 
against future stressors, 7 restoring attention and cognitive 
capacities, 8 facilitating physical activity and social contact, 9 

and supporting microbiota diversity 10 (panel).
Greenspace exposure is commonly assessed around 

locations of interest (LOIs) where people reside 11,12 or spend 
time (eg, schools, 13 workplaces, 14 and commuting 
routes 15,16 ). The standard approach of assessing greenspace 
exposure involves aggregating metrics such as average, 12 

variability, 17 or percentage 18 of vegetation or vegetated land 
cover (eg, parks or tree canopy) within specific geographical 
boundaries surrounding each LOI. These geographical 
boundaries, collectively referred to as buffers, can be based 
on administrative units (eg, postal codes) or various shapes 
and sizes. For consistency, we use the term buffers to 
refer to all geographical boundaries surrounding LOIs, 
acknowledging that some might not strictly align with the 
conventional definition of the term.

The selection of buffer types and sizes is an important 
decision that directly influences the results of a greenspace 
exposure assessment. 19–21 Buffers define the boundaries 
within which exposure is measured, and, equally, where it

is excluded. Despite the importance of buffers, limited 
theoretical or empirical guidance exists on how to select 
appropriate buffer types and sizes. Consequently, studies 
vary widely in how buffers are selected, with choices 
differing in size, type, and stated rationale. 19,20 This het-
erogeneity leads to inconsistent findings 22–25 by influencing 
both the magnitude and direction of the estimated 
greenspace–health associations, 22,23,26–28 limiting causal 
inference and cross-study comparison. This issue is closely 
linked to the modifiable areal unit problem (MAUP), where 
the shape and size of an analytical unit affect both exposure 
estimates and their associations with human health 29–32 

(figure 1). Additionally, buffer selection is subject to the 
uncertain geographical context problem (UGCoP), 33–35 

which highlights the inherent difficulty of accurately cap-
turing dynamic, time-varying exposure patterns within 
static spatial boundaries.

Inconsistent approaches to buffer selection have become 
a substantial barrier to synthesising evidence on 
greenspace–health associations. Homogenising buffer 
selection approaches would help to resolve uncertainties 
regarding exposure effects and underlying mechanisms, 
supporting the establishment of causal pathways and 
mechanisms. Reducing methodological heterogeneity 
would also provide a more robust foundation for policy 
development and implementation. Although several stud-
ies have examined specific aspects of buffer selection, 22,36,37 

these efforts have primarily focused on a limited number of 
determinants, addressing only single dimensions (ie, size
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or type, but not both), or reflected perspectives from a single 
discipline and geographical region.

To address these limitations, we assembled an interdis-
ciplinary panel of experts representing diverse geographical 
contexts, from low-income and middle-income countries to 
high-income nations across all continents, to establish 
guidance for buffer selection in greenspace epidemiology. 
This guidance seeks to achieve five key objectives: (1) con-
textualising buffer selection within the continuum of loca-
tion data granularity available for exposure assessment;
(2) reviewing available buffer type delineation approaches;
(3) examining buffer size considerations; (4) identifying and 
systematically organising the determinants that inform 
buffer type and size; and (5) developing recommendations 
for selecting buffers in future greenspace–health research.

By providing this guidance, we aim to transition greenspace 
exposure assessments from ad-hoc approaches towards 
more systematic, hypothesis-driven, and context-appropriate 
methods.

A continuum of location data granularity
Location data for greenspace exposure assessment exists 
along a continuum of spatial and temporal granularity, 
ranging from single-point locations to comprehensive 
activity-space approaches (figure 2). At the simplest end of 
this continuum are single-point LOIs, such as residential 
addresses, which are commonly used 38 but necessarily 
assume that exposure at a single location sufficiently 
captures most environmental exposures. Although these 
approaches lack temporal granularity, their spatial

Sweden (K Samuelsson); 
Institute for Housing and Urban 

Research, Uppsala University, 
Uppsala, Sweden (K Samuelsson, 
Prof T Hartig PhD); Department 

of Human Geography and 
Spatial Planning, Faculty of 

Geosciences, Utrecht University, 
Utrecht, Netherlands 

(S M Labib PhD, M Helbich PhD); 
Department of Sustainable 

Design Engineering, Faculty of 
Industrial Design Engineering, 
Delft University of Technology, 

Delft, Netherlands 
(A Psyllidis PhD); Public Health 

Research Group, Department of 
Biomedical Sciences, University 

of Cape Coast, Cape Coast, 
Ghana (A Amegah PhD); 

Population Wellbeing and 
Environment Research Lab 

(PowerLab), Sydney, Australia 
(Prof T Astell-Burt PhD, 

Prof X Feng PhD); School of 
Architecture, Design and 

Planning, University of Sydney, 
Sydney, Australia 

(Prof T Astell-Burt); Westmead
Applied Research Centre, 

Westmead Hospital, Sydney, 
Australia (Prof T Astell-Burt); 

Charles Perkins Centre, 
University of Sydney, Sydney, 
Australia (Prof T Astell-Burt); 

Sydney Environment Institute, 
University of Sydney, Sydney, 
Australia (Prof T Astell-Burt); 

Center for Ecological Research
and Forestry Applications 
(CREAF), Barcelona, Spain 

(A Bach); Autonomous 
University of Barcelona (UAB),

Barcelona, Spain (A Bach); 
Department of Environmental 

Health Sciences, Fielding School 
of Public Health, University of

California Los Angeles, Los 
Angeles, CA, USA 

(Prof M Jerrett PhD); School of
Environmental and Forest

Sciences, University of 
Washington, Seattle, WA, USA 

(G N Bratman PhD); Department 
of Environmental and 

Occupational Health Sciences,
University of Washington, 

Seattle, WA, USA (G N Bratman); 
Department of Psychology, 
University of Washington, 

Seattle, WA, USA (G N Bratman); 
School of Population and Public 

Health, University of British 
Columbia (UBC), Vancouver, BC, 

Canada (M van den Bosch); 
Department of Forest and

Conservation Sciences, 
University of British Columbia 
(UBC), Vancouver, BC, Canada

Panel: Glossary of technical terms

• Activity space: the locations and places where participants spend time during their daily activities.
• Adaptive buffer sizes: the application of varying buffer sizes for different participants and contexts to address the constant-size 

neighbourhood trap.
• Adaptive circular buffers: the use of varying buffer distances to draw circular buffers around locations of interest.
• Adaptive kernel density estimation: a form of kernel density estimation in which the bandwidth varies by location or characteristics 

of the points.
• Administrative units: subdivisions of geographical areas or territories recognised by governments for administrative purposes.
• Buffers: discrete zones, measured in units of distance or time, which are superimposed onto the location of interest.
• Constant-size neighbourhood trap: a problem resulting from all participants having the same activity space, as defined by similar 

buffer sizes, without considering relevant determinants.
• Edge effects: the potential for exposure misclassification among participants living near the borders of the defined buffer (also 

known as boundary effects).
• Exposure misclassification: errors in how an individual’s exposure to an environmental factor (eg, greenspace) is measured or 

categorised, occurring when the assigned exposure level does not accurately reflect the true exposure experienced by a person.
• Geographical masking: techniques used to deliberately modify or obscure the true geographical locations of individuals in spatial 

datasets to protect privacy and confidentiality (also known as geomasking).
• Greenspace: land that is partly or completely covered with grass, trees, shrubs, or other vegetation.
• Greenspace exposure: a term used for consistency with epidemiological literature, while recognising its limitations in capturing 

reciprocal human–nature interactions.
• Green space: a parcel of land covered with greenspace.
• Lacunarity: a scale-dependent measure of spatial heterogeneity or texture of a landscape used for spatial heterogeneity 

measurements.
• Modifiable areal unit problem: a source of statistical bias and uncertainty that arises when the spatial scale or boundaries used to 

aggregate geographical data are arbitrarily defined or modifiable.
• Neighbourhood effect averaging problem: the problem where participant mobility-based exposures to environmental factors tend 

towards the mean level of participants or the population of a study area, rather than their residence-based exposures.
• Positional error: inaccuracy in the measured or recorded spatial location of a feature due to errors in GPS, survey equipment, or 

georeferencing.
• Selective daily mobility bias: a bias in activity-space approaches where a participant appears to be more (or less) exposed to 

environmental characteristics (eg, greenspace) due to their personal decisions about activities and where to conduct them.
• Semivariance: one-half of the variance of the differences between all possible points spaced a constant distance apart.
• Shadow buffer: a buffer (also known as a buffered administrative unit) with a specific distance around the main buffer 

(eg, administrative unit) to compensate for edge effects among participants living near buffer boundaries.
• Trim distance: a distance that is added to the line drawn by network buffers or straight-line ellipses to create a polygon from lines 

(also known as trim buffer).
• Uncertain geographical context problem: the problem that findings about the effects of area-based attributes (eg, land use mix) 

on participant behaviours or outcomes (eg, physical activity) can be affected by how contextual units or neighbourhoods are 
geographically delineated.
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precision can vary depending on the geocoding accuracy 
and resolution of the address data.

Recognising that individuals move through multiple 
environments during their daily lives, more sophisticated 
approaches incorporate data from multiple locations 
to create more comprehensive assessments. 39 Such 
approaches include commonly visited locations beyond 
the home (or other single LOI), such as workplaces or 
recreational sites, to better account for daily movement 
patterns and construct an individual’s activity space. 
Travel diaries and map-based questionnaires provide 
additional granularity by recording the time spent at each 
location, enabling time-weighted calculations that better 
reflect cumulative exposure patterns.

At the most detailed end of the spectrum are continuous 
mobility data, such as GPS or mobile phone location 
tracking. These data enable high-resolution spatiotemporal 
mapping of an individual’s movement and real-time 
environmental context. 40 This approach has the potential 
to capture nearly complete exposure profiles, accounting 
for both locations visited and the duration spent in each 
environment, without the limitations of self-reported 
data. Still, a 2019 review found that single fixed-location 
approaches were used in approximately 53% of studies 
investigating the built environment and human health. 41 

Meanwhile, another review on the relationship between 
nature and children’s mental health found that only 1% of 
included studies used GPS tracking for their exposure 
assessments. 42

The abundance of studies at the simplest end of this 
continuum reflects the ongoing challenge of balancing 
simplicity and feasibility on the one hand, with complexity 
and precision on the other (figure 2). This balance is shaped 
by the availability of data for a given outcome or population, 
as well as the time and resources required for data collection 
and processing. It is also influenced by the research ques-
tion and underlying hypotheses about how greenspace 
is expected to influence outcomes. For example, high-
resolution GPS data are typically available for a limited 
number of participants and miss frequently visited loca-
tions that fall outside the tracking period. 43 In contrast, 
online questionnaire data capture habitual locations across 
broader populations but are limited by the participants’ 
ability to accurately recall where they went, for how long, 
and under what circumstances. Accordingly, studies 
focused on momentary or short-term exposures might be 
better suited to GPS-based approaches, whereas those 
examining cumulative exposure patterns over longer peri-
ods might benefit more from self-reported location 
histories.

An overview of buffer types
Buffers can be of different shapes and be flexibly combined 
with various types of location data. For example, network 
buffers can be applied to GPS-derived locations, whereas 
time-weighted or composite buffers can be constructed 
from diary-based or self-reported locations. In this section,

we provide an overview of the buffer types commonly used 
in greenspace exposure assessments and how they are 
delineated based on the granularity of the available location 
data. We categorise the buffer delineating approaches into 
four main groups: (1) predefined-area approaches, in which 
boundaries follow predefined spatial units such as admin-
istrative areas 30 or grid cells; (2) single-location approaches, 
in which fixed distances or travel times are calculated from 
an LOI; (3) travel-diary or intermittently tracked location 
approaches; and (4) GPS tracking approaches, which 
incorporate continuous mobility data (figure 3).

Predefined-area approaches 
Administrative units
Using administrative units is a well-established approach to 
delineating geographical boundaries. 44–46 In this approach, 
all participants with the same unit (eg, county, census tract, 
or postal code) are assigned the same exposure value. 
However, participants living near unit boundaries might be 
more influenced by adjacent areas (an edge effect), 
increasing the risk of exposure misclassification. 23,39

The main advantages of administrative units include their 
relevance to policy decisions and their use as standard units 
for aggregating sociodemographic and health statistics. The 
main disadvantages include poor alignment with partic-
ipants’ activity spaces, 47–49 and exposure misclassification for 
participants living near unit boundaries. 11,50–52 Other limi-
tations include the substantial variation in unit shapes and 
sizes, often related to population density, 53 as well as changes 
in unit boundaries over time. 23,54,55 Such variation might 
result in differing levels of precision for exposure assess-
ments between participants in small (eg, urban) and large 
(eg, suburban or rural) units. Smaller units also increase the 
likelihood that participants spend substantial amounts of 
time outside their assigned area, 56,57 a limitation that might 
be less influential in specific populations (eg, older adults 
tending to stay closer to their residence). Conversely, larger 
units might encompass green spaces not actually visited 
by participants, reducing exposure contrast and limiting 
statistical power. 55

Grid cells
This approach involves superimposing a grid on the study 
area and estimating participants’ greenspace exposure 
based on the grid cell intersecting with their LOI. 58 

Two common approaches for grid definition are used: 
(1) assigning values from image pixels (eg, 30 × 30 m pixels 
of Landsat satellites’ images) and (2) using a predefined 
grid (eg, 500 × 500 m cells).

In the pixel-based approach, greenspace values from 
satellite or aerial images are directly overlaid onto LOIs, and 
the pixel value containing the LOI is used as the exposure 
estimate. In the predefined grid approach, the researcher 
creates a grid that is overlaid with the greenspace data 
(eg, satellite images or land cover), calculates the average 
greenspace value within each cell, and assigns that average 
to all LOIs within the same cell.
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In both cases, all participants within the same cell are 
assigned the same exposure value, regardless of their pre-
cise LOI locations. Although relatively easy to implement, 
this approach overlooks intracell variation. This limitation 
is particularly relevant when cells are large and the research 
question involves micro-scale exposures near the LOI. In 
such cases, the exposure estimates of LOIs near the edge of 
a cell might be misclassified due to their distance from the 
cell centroid. 59

Single-location approaches 
Circular buffers
Circular buffers, also known as Euclidean, crow-fly, radial, 
straight-line, or uniform buffers, are among the most 
common approaches to delineating buffers in greenspace– 
health research. 7,60–62 These buffers are defined as circles 
centred on an LOI, with a radius specified by the researcher. 
Greenspace exposure is typically calculated as the average 
value within the buffer area, assuming that all points within 
the boundary contribute equally to exposure.

A key limitation of this approach is the inability to dif-
ferentiate the influence of greenspaces at varying distances 
within the LOI. 63 Since greenspace use often decreases 
with increasing distance from a participant’s residence 
(although not always), 27,64 larger buffers may include areas 
that participants rarely or never visit. In these cases, 
applying a distance-decay function can help to model the 
declining likelihood of greenspace use with increasing 
distance. 65

Similar to administrative unit and grid cell approaches, 
circular buffers also fail to account for physical barriers 
such as major roads, rivers, or private properties, which 
might restrict access to nearby greenspaces. 66,67

Nested buffers
Nested buffers consist of a series of non-overlapping 
buffers of increasing size, designed to examine how the 
relationship between greenspace exposure and health out-
comes varies with distance from an LOI. 36,68,69 Typically, the 
innermost buffer is a circular area closest to the LOI, 
whereas subsequent buffers take the form of concentric 
rings, also known as doughnut-shaped buffers 70 that rep-
resent specific distance bands (eg, 0–100 m, 100–300 m, 
300–500 m).

Although most nested buffer approaches are concentric, 
they can also take irregular shapes. For example, a school 
catchment zone might exclude the school building and its 
grounds when estimating exposure for students who live 
nearby. 69,71 Several studies have compared nested buffers 
with overlapping circular buffers, 71–74 and a review recom-
mended using nested buffers when the goal is to assess the 
independent contributions of greenspace at varying 
distances from an LOI. 36

Network buffers
Network buffers approach estimates the area accessible 
within a specified distance or travel time from an LOI by

tracing routes along street or footpath networks. Some 
approaches incorporate travel time, applying assumptions 
regarding average movement speeds.

Polygon-based network buffers generate a polygon by 
connecting the endpoints of all possible routes along a 
network extending up to a given distance (eg, 800 m or a 
15-min walk) from the LOI. 75 This approach is intended to 
more accurately reflect accessible areas compared with 
circular or administrative unit buffers. However, connect-
ing street nodes with straight lines might misrepresent 
actual travel paths, particularly in areas with irregular street 
layouts or informal shortcuts. 67

Line-based network buffers, also referred to as detailed, 
road-based, route-based, sausage, or trip buffers, use the set 
of all network lines from an LOI to endpoints within a 
specified distance. 69,76–79 These lines are typically buffered by 
a small perpendicular offset (a trim distance) before being 
intersected with greenspace parcels, 67,80 so that only green-
space within a specified proximity to the network is inclu-
ded. This approach might better reflect visible or accessible 
greenspace, particularly for pedestrians, 36 and is less likely 
than polygon-based buffers to capture large, inaccessible 
greenspaces. 63 One study found that line-based network 
buffers showed stronger associations with mental health 
outcomes then circular buffers. 81

However, line-based buffers might still include private 
green spaces. Adjusting the trim distance can help to 
mitigate this issue, but might reduce comparability across 
studies due to differences in local conditions (eg, street 
widths) and map data formats (eg, polygonal streets vs 
centrelines). 77 Additionally, network buffers assume that 
participants travel only along roads or designated footpaths, 
omitting informal or off-network routes commonly used in 
real-world settings. 78

Assumptions regarding travel mode (eg, walking, cycling, 
or transit) and average speed also influence the size and 
shape of network buffers and thus affect exposure esti-
mates. 82,83 Although network buffer approaches allow for 
incorporating factors such as street sinuosity, slope, and 
perceived safety, 84 these considerations have rarely been 
applied in network-based greenspace exposure assessments, 
despite their potential importance for specific populations 
(eg, participants with mobility limitations). 15,85

Travel diaries and intermittent location tracking 
Standard deviation ellipses
The standard deviation ellipse (SDE) approach represents a 
participant’s activity space by summarising the spatial 
spread and orientation of their movement or activity loca-
tions. 86 The SDE approach generates an ellipse based on the 
standard deviation of X and Y coordinates, typically using 
one or two standard deviations, to define the radius along 
each axis. 87 Ellipses can be constructed using anchor 
points 80 or GPS tracking data. 57 Although this approach 
provides a spatial footprint of activity, one study found that 
SDEs tend to overestimate the size of the actual activity 
space. 49
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Minimum convex polygons
The minimum convex polygon (MCP), also known as the 
minimum convex hull or home range, 88 is the smallest 
convex polygon that encompasses all recorded activity 
locations, with internal angles less than or equal to 
180 degrees. 89 MCPs can be constructed from as few as 
three anchor points (eg, home, workplace, and a third 
routine location). 90 However, because the polygon is 
defined by the outermost points, this approach often over-
estimates the true extent of a participant’s activity space, 
sometimes by a factor of 100 or more, making it poorly 
suited for most greenspace exposure assessments. 91

Self-drawn neighbourhoods
The self-drawn neighbourhood (SDN), also known as a self-
defined neighbourhood 92 or cognitive map, 93 is created by 
asking participants to draw the boundary of what they 
perceive as their neighbourhood on a map. 94 Although this 
approach offers data on each participant’s perceptions 
of space, it has notable challenges, including variability 
across contexts, low familiarity with neighbourhoods, and 
challenges in replicability. 95,96

SDNs can include areas not directly used in participants’ 
daily routines. For example, a study in West Yorkshire, UK, 
found that SDNs captured only 10% of participants’ actual 
daily movement, and 40% of the area within the drawn 
boundaries was not visited by participants. 94 Factors such as 
socioeconomic and demographic characteristics, physical 
and mental health, and transportation mode can influence 
the size and accuracy of SDNs. 92,97,98 For instance, longer 
residence duration, higher education and income, and 
greater neighbourhood engagement, have been associated 
with larger perceived neighbourhood areas. 99

Importantly, the places participants recall when drawing 
their SDN might reflect locations that are particularly sali-
ent or meaningful. From this perspective, discrepancies 
between SDN and actual movement patterns might not be 
limitations, particularly in studies aimed at comparing 
different greenspace exposure mechanisms (eg, physical 
activity and attention restoration). This approach might be 
particularly relevant for health pathways that involve psy-
chological benefits, where subjective perceptions play a 
central role. 100

Daily path areas
The daily path area (DPA) approach delineates a participant’s 
activity space by adding fixed-distance buffers around 
movement points (eg, GPS data) or lines (eg, participant-
drawn travel routes). When high-resolution tracking data 
are available, this approach can, in principle, capture par-
ticipants’ cumulative greenspace exposure across their daily 
routines. 42,86,88 A time-weighted DPA can also be constructed 
by incorporating the duration associated with each location
point. 42,49,70

DPA-derived exposure estimates tend to correlate weakly 
with those based on residential neighborhoods 57 but show 
stronger correlations with estimates from MCPs and

SDEs. 86 Limitations of this approach include low reprodu-
cibility due to the dynamic nature of human movement 
location, particularly when applied over shorter timeframes 
(eg, daily vs monthly). Additional challenges include par-
ticipant recruitment, adherence, and retention, as well as 
the burden of having to track their movements placed on 
the participants. 101,102 Some of these challenges might be 
mitigated using passively collected time–location data, such 
as smartphone-based GPS tracking. 103

GPS tracking: kernel density estimation
Kernel density estimation (KDE) is a statistical approach 
that transforms discrete point data (eg, GPS locations) into 
a continuous probability surface across a grid. 104,105 Each 
grid cell (or pixel) represents the weighted density of nearby 
points within a specific search radius, with weights typically 
decreasing with increasing distance from the cell. 105 KDEs 
can account for both the frequency and duration of visits to 
specific locations, 57 and are often used to identify clusters of 
activity points. 106

An extension of this approach, adaptive KDE, adjusts the 
search radius based on the density of observation points 
and characteristics of the built environment. 107,108 Unlike 
standard KDE, which assumes a homogeneous back-
ground, adaptive KDE allows bandwidths to vary as a 
function of spatial context, enabling more refined model-
ling of activity patterns in heterogeneous environments. 109

An examination of buffer sizes
A buffer’s size clarifies the size of the spatial area within 
which greenspace is assessed, and the specific definition 
varies by buffer type. For circular buffers, the size refers to 
the radius; for network buffers, it is the distance measured 
along transportation networks; for DPAs, it is the offset 
distance around points or lines; for SDEs, it is defined by the 
number of standard deviations used to construct ellipses; 
and for KDE, it corresponds to the search radius used to 
create the density surface. Cell resolution serves as the spatial 
size in grid cell approaches, whereas MCPs are data-driven 
and do not require the selection of a buffer size.

Buffer sizes in greenspace epidemiological studies range 
widely, depending on the research question and hypoth-
esised exposure pathways. This range spans from a few 
metres (eg, 20 m to develop a building proximity to green-
space 110 ) to several kilometres (eg, 10 km for studies of 
greenspace and allergens 111 ). This range can be categorised 
into three meaningful scales 23 : (1) personal scale (10–100 m), 
which captures immediate surroundings and direct 
environmental exposures around participant locations; 
(2) neighbourhood scale (100–2000 m), which encompasses 
areas where most daily activities occur, including local parks, 
neighbourhood green corridors, and accessible recreational 
spaces (eg, from a few hundred meters 112 up to around 
2 km 113 ); (3) city or district scale (>2 km), which includes 
broader urban green infrastructure that might influence air 
quality, temperature regulation, and regional environmental 
conditions.
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Pathway-specific considerations of buffer sizes
Different pathways by which greenspace benefit health are 
likely to operate at various spatial scales. Evidence suggests 
that measuring greenspace in smaller buffers produces 
stronger health associations for certain mechanisms,

whereas large buffers might be more relevant for other 
mechanisms, such as physical acitivity. 7,114,115 In dense urban 
environments, for example, very small buffers around the 
home might be especially relevant for mental wellbeing, 
given the heightened importance of visual access to
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Figure 1: Schematic representation of the modifiable areal unit problem (MAUP)
(I) presents the study area with four participants (A, B, C, and D), residing in an area with 4 × 4 (i.e. 16) areal units. (II) presents four buffers with a 2 × 2 (i.e. 4) units delineation. The estimated greenspace 
exposure of participants (measured as the number of trees per area unit) ranges from 0⋅56 to 0⋅81. (III) shows the effect of scale (buffer size) in MAUP. By using a smaller buffer size, the exposure to 
greenspace ranges from 0⋅00 (for C) to 2⋅00 (for D). (IV) represents the effect of shape in MAUP. The buffer areas in II and IV are both equal to four units but have different shapes. The estimated exposure 
ranges from 0⋅12 to 1⋅12.
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Figure 2: Continuum of location data granularity for greenspace–health studies
The figure illustrates the trade-offs between granularity, spatial and temporal precision, and methodological complexity across different approaches to defining an 
individual’s environmental context. Neighbourhood-level and single-location approaches (eg, administrative units) are simple and widely used but provide lower 
precision. Travel-diary and multiple-location approaches incorporate habitual mobility patterns, offering intermediate precision and complexity. The continuous GPS 
tracking approach offers the highest spatial and temporal resolution but requires advanced data processing, raising concerns regarding feasibility and privacy.
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greenery. These micro-scale exposures can support stress 
reduction and psychological restoration, particularly when 
larger green spaces are inaccessible. Research in Singapore 
has showed curvilinear relationships between greenspace 
and mental health across increasing buffer sizes for circular, 
network, and nested buffer approaches. 72 However, findings 
across studies remain heterogeneous, with some reporting 
consistent associations across multiple buffer sizes, even 
among subpopulations with varying mobility patterns. 116

Methodological challenges of large buffer sizes
Larger buffer sizes introduce several analytical challenges. 
They can mask spatial heterogeneity in greenspace exposure 
at finer scales, 117,118 reducing variability in exposure esti-
mates. 119 This problem is particularly pronounced in dense 
urban areas where participants’ large buffers might overlap

substantially, creating spatial autocorrelation that should be 
addressed by specialised regression techniques. 20,120

More generally, every environment has an upper limit for 
buffer sizes, beyond which buffers are unlikely to capture 
meaningful exposures. 30,59 The lacunarity curve, a spatial 
scale-dependent measure of heterogeneity, can help to 
identify this upper boundary, based on evidence from a 
preprint paper and a research article. 30,121 For example, 
research in Manchester, UK, identified upper bounds for 
normalised difference vegetation index variance at 
approximately 640 m for Sentinel-2 imagery and 480 m for 
Landsat-8 imagery. 30

Concluding thoughts on buffer sizes
Given these considerations and challenges, no universally 
correct buffer size exists. The optimal choice depends on

A B C D

E F G H

I J K L

Figure 3: Buffer types of greenspace–health studies
(A) The study area; (B) Grid cells; (C) Administrative units; (D) Circular buffers; (E) Nested buffers; (F) Line network buffers; (G) Polygon network buffers; (H) Daily path areas; (I) Standard deviation ellipses; 
(J) Minimum convex polygons; (K) Kernel density estimations; (L) Self-drawn neighbourhoods.
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multiple factors, including the specific health outcome(s), 
hypothesised causal pathway(s), study population charac-
teristics, and local environmental context. Because lacu-
narity analysis only guides the selection of the largest buffer 
size, Bayesian model averaging has been proposed to 
address contextual uncertainties by pooling greenspace 
effect estimates across multiple buffer sizes within 
appropriate upper boundaries. 122

Determinants of buffer selection
Although there is no single formula for choosing buffer type 
and size, researchers can rely on several key determinants to 
inform their choices.

Health outcomes and underlying mechanisms
The hypothesised mechanisms linking greenspace to 
health outcomes should guide buffer selection. For 
example, when examining neighbourhood social phe-
nomena (eg, social capital or crime rates), perceived areas 
through SDNs might be most relevant. Circular or network-
based buffers can conceptually represent individual 
exposure environments, but their application becomes 
statistically constrained when outcome data are only avail-
able at a coarser spatial resolution. In such cases, all buffers 
within the same administrative unit receive identical 
values, leading to non-independence of observations, 
pseudoreplication, and artificial inflation or deflation of 
statistical power. 123 This spatial mismatch between expos-
ure and outcome can bias effect estimates and limit 
interpretability.

The assumption that network buffers are always more 
appropriate than circular buffers should also be questioned. 
For health outcomes not limited to travel and roads (eg, air 
pollution and pollen exposure), circular buffers might be 
equally appropriate or superior. 1,124 Network buffers are 
generally more beneficial when outcomes relate to 
greenspace accessibility and behaviours such as physical 
activity. 68,125,126 However, observed associations between 
greenspace exposure and outcomes do not necessarily 
indicate that greenspace within road network buffers 
increases physical activity. Instead, this could be explained 
by physically active individuals selecting routes with more 
green space, also known as a selective daily mobility bias. 126 

Small buffers might be more appropriate for outcomes 
related to psychological restoration, stress reduction via 
visual access to greenspace, noise annoyance, or individual 
microbiota enrichment. 127 For mechanisms operating 
through visual access, residential building density is an 
important consideration. 128 In dense urban areas, residents 
on ground floors might only see a few metres of green-
space, whereas those on higher floors might have sub-
stantially farther views, warranting larger buffers for 
residences on higher floors.

For outcomes hypothesised to relate primarily to physical 
activity, purposeful visits, or greenspace use, buffer selection 
is challenging given the highly variable nature of human 
behaviour. A 300-m radius represents approximately a

5-min walking distance, whereas 500-m radius represents 
5–10-min distance and 1000-m radius represents 10–15-min 
distance. 10,129 Although some studies suggest greenspace use 
declines rapidly beyond 100–300 m from home, 27,65 larger 
buffers have also been better predicted to improve physical 
health and loneliness. 7,61 Browning and Lee’s systematic 
review found that buffer sizes between 1000 and 1999 m 
showed more consistent protective associations between 
greenspace and physical health (including physical activity) 
than smaller or larger sizes. 36 Buffer-based metrics, such as 
the percentage of area covered by green spaces or parks, can 
be useful for opportunities for green space access and use. 
Still, alternative metrics, such as straight line or network 
distance to the nearest park of a specified minimum size, 
might be equally relevant for physical activity-related 
hypotheses; however, these distance-based measures are 
beyond the scope of this Personal View.

For pollen exposure conditions, a New York study 
reported that pollen levels correlated with tree cover in 
radial buffers of around 1000 m, more specifically between 
250 and 500 m, depending on the plant species and pollen 
size, shape, and weight. 130

Buffer size selection also depends on the cooling effects 
of green spaces near an LOI. The strongest ambient air 
temperature and heat stress reduction occurs at closer 
distances to (< 380 m, and likely, strongest within 150 m). 5 

However, cooling distance depends on park size, shape, 
and climate, with parks smaller than 10 000 m 2 often 
showing no notable cooling effect. 131

Population characteristics
Study population characteristics substantially influence 
buffer selection. Health and health-related behaviours 
(eg, pregnancy, disability, fitness level), sociodemographic 
characteristics (eg, age, gender, ethnicity, socioeconomic 
status, employment), and preferences related to greenspace 
(eg, professional joggers, nature enthusiasts) affect mobil-
ity capacities, opportunities, needs, choices, and societal 
constraints (including those generated by stigma and 
structural discrimination). 132 These characteristics should 
therefore guide buffer type and size selection. 88 

Age-related mobility patterns are particularly relevant. 
Children and older adults typically travel shorter distances 
than adolescents and younger adults; an average 5-min 
walk is approximately 200 m across all ages compared to 
300 m when excluding older adults and 320 m when add-
itionally excluding children. 133,134 Similarly, pregnant 
women’s activity spaces tend to shrink in late pregnancy. 91 

For these populations, smaller circular or network buffers 
centred around the residence might be most relevant. 135,136 

Highly mobile populations (eg, employed individuals, 
younger participants, high-income participants, car own-
ers) can pose challenges related to the neighbourhood effect 
averaging problem when using solely residence-based 
approaches. 137 For these populations, approaches using 
travel diary, intermittent location tracking, or GPS data 
(eg, DPA or KDE) might provide more accurate
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assessments. 48,138 Personal preferences, such as connect-
edness to nature, can also affect buffer selection, as people 
with higher levels of connectedness might travel greater 
distances to access greenspace. 139 These findings highlight 
the potential value of participant preferences when 
selecting buffer types and sizes.

In summary, for studies focusing on a specific sub-
population (eg, pregnant women, children), buffer type and 
size should prioritise the group characteristics and mobility 
patterns. For studies with heterogeneous populations, 
applying multiple buffer sizes and types relevant to the 
included population groups (as sensitivity analyses) and 
testing interactions between buffer sizes and types can help 
to evaluate whether exposure affects population groups 
differentially.

Contextual factors 
Study setting
Study area characteristics such as urbanicity and climatic 
zone affect should to be considered in buffer type and size 
selection. 138,140,141 Beyond greenspace, buffers often include 
non-green elements such as roads, buildings, or pollution 
sources that can influence health or potentially alter or 
confound the mechanisms through which greenspace 
exerts its effects. In historical areas with dense, irregular 
forms, a single fixed-location approach (typically home) 
might capture built-up residential environments, com-
pared to an activity-space approach that captures more 
distant greenspace. 140 However, these approaches answer 
different research questions—buffers at single fixed loca-
tions reflect greenspace accessibility or availability, whereas 
activity-space approaches measure realised exposure based 
on behaviour. The opposite pattern might apply to residents 
of suburban areas who travel to dense urban centres for 
work or education, leading to mismatches between 
residence-based and actual greenspace exposure. Such 
scenarios exemplify the neighbourhood effect averaging 
problem, where relying on residential-based exposure can 
mask true individual variability due to daily mobility 
patterns.

Urbanicity also influences the relevance of the buffer size. 
A Hong Kong study across six regions with varying urban-
icity found that associations between greenspace and per-
ceived general health differed by buffer size across settings. 
In highly urbanised areas, statistically significant associa-
tions were observed within smaller buffers (100–500 m), 
whereas in less urbanised regions, stronger associations 
emerged at larger buffers (2000–5000 m). 142

Beyond urbanicity, characteristics of greenspaces, such 
as size, shape, public access (ie, hours, entrance fees), and 
qualities, might modify buffer size recommendations 
when nearby greenspaces do not meet residents’ needs. 
Climatic conditions also matter—in extreme or arid cli-
mates, accessibility and availability of nearby greenspaces 
can change seasonally, potentially justifying larger or more 
flexible buffers to capture seasonally preferred or distant 
locations. Conversely, in tropical or temperate zones with

evergreen vegetation, greenspace use tends to be more 
consistent year-round, meaning that buffer selection is less 
affected by season and data collection timing. However, 
in large-scale studies (eg, continental or national level), 
using small cell sizes (eg, dozens of metres) might have 
computational limitations. 143

Additionally, the LOIs included in a study shape buffer 
selection. Activity-space approaches include LOIs access-
ible through commuting and travel modes (eg, cycling, 
walking, transit). However, if a study focuses on particular 
associations in predefined settings, buffer approaches 
using multilocation data might not provide additional 
benefits over those centred on single locations.

Planning policies
Buffer selection can influence how easily research findings 
inform decision making. 144 The European Commission 
defines access to greenspaces as living within a 300-m 
distance from a green space of at least 5000 m 2 . 145 There-
fore, some studies have used a 300-m circular buffer around 
homes to extract surrounding greenspace in line with this 
indicator. 146–149 Other examples of greenspace thresholds 
include a 10-min walk to a park, widely used in the USA, 150 

the 15-min city framework, and the 3–30–300 rule. 149,151 

Considering these thresholds when selecting buffers can 
aid studies motivate and monitor greenspace access 
initiatives.

Since administrative boundaries are often more relevant 
for policy makers, studies intended to inform policies 
might be justified in using this buffer type. 24,152 Conducting 
analyses across administrative boundaries at different 
scales might tailor findings to decision making at various 
levels of government, ranging from local to national. 117

Data considerations 
Characteristics of data sources
Greenspace quantification traditionally relies on grid-based 
raster files or land cover and land-use maps with specific 
pixel sizes, minimum mapping units, or geometric accur-
acies. 153 When greenspace data is raster-based, pixel size 
(spatial resolution) measures the minimum usable buffer 
size. For example, applying a 100-m buffer is not recom-
mended if the greenspace raster data has a 500-m reso-
lution. Similarly, due to geometric accuracy in land cover 
maps (eg, approximately 100 m for CORINE Land Cover 154 ), 
smaller buffers carry a higher risk of exposure misclassifi-
cation compared with larger buffers. High-resolution raster 
data or land cover and land-use maps with higher geometric 
accuracy and smaller mapping units warrant applying 
smaller buffers. Comparing spatial heterogeneity metrics 
such as lacunarity, local variance, semivariance, and scale 
variance at different sizes might be useful for buffer 
selection. 155

Emerging data sources, such as street-view imagery, 
social media, and social-sensing data, now complement 
traditional remote sensing approaches to greenspace 
assessment. 156–159 Street-level imagery (eg, Mapillary, Google
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Street View, Baidu Street View), when combined with 
machine-learning techniques, enables quantification of 
visible greenness through indexes such as the Green View 
Index. 159,160 Unlike satellite-based metrics, Green View 
Index captures human-scale, vertical, and facade-level 
vegetation, offering more realistic approximations of vis-
ual greenery experienced by pedestrians. Social media and 
social-sensing platforms, such as X (formerly Twitter), Tri-
pAdvisor, Instagram, and Foursquare, provide user-
generated data with insights into subjective perceptions of 
greenspace. 161,162 For example, sentiment analysis and a 
hedonometer of X posts have been associated with park 
visits with positive emotional responses. 163,164 Such emer-
ging data sources might enhance our understanding not 
only of greenspace quantity but also of quality, accessibility, 
and user experience.

Data accuracy and availability
Location geocoding accuracy varies by approach and geo-
graphical area. 165,166 Street geocoding is among the most 
common approaches in epidemiological studies, 167 with 
reported positional error for street geocoding ranging from 
approximately 40 m to 75 m. 167

Another approach uses GPS devices or smartphone 
applications, such as NatureDose TM , to geocode partic-
ipants’ activity spaces. 168 GPS devices used in epidemio-
logical studies usually have positional errors ranging from 
10 to 20 m. 169 The buffer size should not be smaller than the 
expected geocoding error.

Positional errors in urban areas and more densely 
populated regions tend to be substantially smaller than 
those in rural areas. 170,171 However, GPS receiver accuracy is 
context-dependent as they regularly fail to record indoor 
positions and are less accurate when signals are obstructed, 
for example, by dense canopy cover 171,172 or tall build-
ings. 173,174 Geocoding accuracy is often higher in urban 
areas than in rural areas, allowing the application of smaller 
buffer sizes with greater confidence in urban settings. 
Apart from introducing exposure misclassifications, geo-
coding errors can considerably bias travel estimates 
(eg, network buffers results) and lead to imprecise acces-
sibility estimates. 175,176 Excluding participants due to 
unavailable geocoding accuracy at desired buffer sizes can 
introduce selection bias. A better approach is to report 
results for these participants using a group with multiple, 
larger buffer sizes. 165

Data ethics and privacy
Some data related to socioeconomic deprivation and health 
are available only in aggregated form to preserve anonymity 
and privacy. 177 For this data type, using the same aggrega-
tion area (ie, administrative unit) to assess greenspace is 
recommended. When administrative areas are small or 
population mobility is likely to extend beyond residential 
units, using a shadow buffer might provide a more accurate 
representation. 178 Given the privacy concerns and data 
protection regulations, some health data sources

intentionally introduce random errors in participant geo-
location, a process known as geographical masking. 179 In 
these cases, the buffer size for extracting greenspace should 
be at least as large as the induced error size.

Guidelines for buffer selection in greenspace– 
health research
The selection of appropriate buffer types and sizes is an 
important methodological decision that directly influences 
the validity and interpretability of research findings. Rather 
than relying on arbitrary or conventional selections, 
researchers should adopt a systematic, hypothesis-driven 
approach grounded in the determinants outlined above 
and depicted in the table (for selecting buffer types) and 
figure 4 (for selecting buffer sizes). The following guide-
lines provide a framework for making these decisions while 
acknowledging that no single buffer approach is universally 
optimal.

General principles
(1) Apply a determinant-driven approach: buffer 

selection should be explicitly justified based on key 
determinants, including health outcomes and 
underlying mechanisms, study population charac-
teristics, contextual factors, and data consid-
erations. This rationale should be clearly articulated 
in study protocols and publications; (2) Implement 
sensitivity analyses: given the inherent uncertain-
ties in buffer selection, researchers should examine 
multiple buffer types and sizes as sensitivity ana-
lyses. This approach not only strengthens the 
robustness of the findings but also provides 
insights into the spatial scale dependence of 
greenspace–health associations; (3) Avoid model fit-
based selection criteria: the choice of buffer types 
and sizes for primary analyses should not be 
determined by statistical model performance met-
rics (eg, R 2 , Akaike information criterion values). 
Model fit might not accurately reflect the true 
extent of greenspace influences on health outcomes 
and can lead to post-hoc rationalisation of meth-
odological choices. 180 Instead, determinant-
informed approaches should guide buffer type 
and size selection; (4) Prioritise buffer type before 
size: although both buffer type and size are 
important, buffer type should be selected first 
based on relevant determinants. Size can then be 
flexibly selected within plausible ranges.

Buffer type selection
(1) Prioritise activity-space approaches when feasible 

and appropriate: high-granularity activity-space 
approaches (eg, GPS tracking) better capture actual 
exposure patterns than single-location approaches 
and should be preferred for primary analyses when 
resources and data permit; (2) Maintain single-
location approaches for comparability: even when
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Recommended applications When to avoid Best practices

Administrative units Ecological studies, when health data are only available 
aggregated at administrative levels, informing policy

Individual-level analyses with fine-resolution data Use shadow buffers to compensate edge effects, report 
limitations of this buffer type

Grid cells Raster data with matching resolution Large cells when fine-scale exposure is needed Use higher-resolution grids
Circular buffers Visual access, studies of greenspace mitigating harmful

exposures
When access is important for study context, population,
or pathways

Use distance decay weighting, combine with network
buffers when appropriate

Nested buffers Exploring distance decay or effect variation by distance, 
sensitivity analyses

As sole measure of exposure Use alongside other buffer types to explore gradient 
effects, specify rationale for each distance band 

Network buffers Studies focused on accessibility and use, physical activity 
studies

Outcomes unrelated to mobility Incorporate travel modes, street attributes (eg, safety, 
topography), adjust trim distances contextually

Standard deviation 
ellipse

Rarely recommended due to large activity space 
overestimation

As main buffer type for exposure assessment If used, use constraints or filters to exclude unused areas

Minimum convex 
polygon 

Large-scale movement pattern studies, exploratory 
studies

As main buffer for exposure assessment Combine with time-weighting or other restrictions

Self-drawn 
neighbourhood

When perceptions or subjective definitions of 
neighbourhoods are the key focus of studies

Precise spatial exposure assessments Compare with actual activity space, analyse 
discrepancies to explore perceptions versus reality

Daily path area Using high-resolution tracking data to assess actual 
exposure along routes

Studies without reliable tracking data or if participants 
cannot provide consistent paths

Use time-weighted approaches, supplement with other 
buffer types

Kernel density 
estimation

Studies with fine-grained tracking data, when 
estimating exposure probability surfaces

Sparse data or low point densities Use adaptive kernel density estimation to incorporate 
environmental characteristics, adjust bandwidths 
appropriately

Vertical or 3D buffers Dense high-rise urban settings, visual exposure 
assessments

Low-rise or open contexts in which vertical dimensions 
are less meaningful

Integrate with horizontal buffers, combine LiDAR or 
other 3D data when possible

Table: Buffer type selection guidelines for greenspace and health studies
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Figure 4: Illustrative framework for selecting appropriate buffer sizes based on contextual, pragmatic, population, and mechanistic considerations
The horizontal axis indicates buffer size (from smaller to larger), referencing spatial resolutions (eg, aerial photos, satellite imagery) and common distance thresholds (eg, WHO-Europe recommendation of 
300 m and a 10-min walking distance of 800 m). The vertical axis organises criteria into four domains—contextual (eg, urban density), pragmatic (eg, positional error), population-specific (eg, vulnerable 
groups and physical ability), and mechanistic (eg, mental wellbeing and physical activity). The colour gradients indicate the relative relevance of the buffer size within each domain; the more saturated 
colours represent a higher relevance.
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using activity-space approaches, researchers can 
report results for single-location buffers (typically 
residential areas) to facilitate comparisons across 
studies; (3) Use multiple locations when activity-
space data is unavailable: when comprehensive 
mobility is not feasible, incorporating LOIs 
(eg, home, work, school, commuting routes) is 
preferable to relying solely on residential 
addresses. This helps to avoid spatial misclassifi-
cation from the uncertain geographical context 
problem; (4) Exercise caution with administrative 
unit approaches: avoid administrative units and 
other predefined spatial units for individual-level 
analyses, as they often poorly represent activity 
spaces and exposure patterns. However, these 
approaches remain valuable for ecological studies 
where exposure and outcome data are aggregated 
at the same administrative level, and when it is 
necessary to directly inform or monitor greenspace 
policies (eg, the 3–30–300 rule); (5) Limit the use of 
standard deviation ellipses and minimum convex 
polygons: given their tendency to overestimate 
activity spaces and include unvisited areas, SDEs 
and MCPs should not serve as primary buffer types 
unless combined with additional constraints or 
filtering methods to exclude unused space; (6) Use 
nested approaches for mechanistic studies: nested 
or doughnut-shaped buffers can effectively exam-
ine how greenspace–health associations vary with 
distance from LOIs, providing insights into the 
relative importance of different mechanistic path-
ways; (7) Consider perceptual approaches for psy-
chological outcomes: self-drawn neighbourhoods 
and other perceived approaches can offer insights 
into mental health and health-related behavioural 
outcomes, as subjective perceptions might be 
more relevant than objective spatial boundaries;
(8) Explore 3D approaches in dense urban envi-
ronments: in cities with extensive high-rise devel-
opment and vertical greenspace (eg, Singapore, 
Hong Kong), consider 3D buffer approaches that 
account for green walls and elevated vegetation, 
particularly for greenspace visibility mechanisms;
(9) Consider temporal weighting in activity-space 
exposure assessments: when using GPS or other 
mobility-based approaches, future studies should 
incorporate not only spatial location but also time 
spent in each place. Time-weighted exposure 
estimates better reflect actual exposure patterns.

Buffer size selection
(1) Define size ranges based on multiple determi-

nants: rather than selecting single buffer sizes, 
researchers should identify the lower and upper 
thresholds that encompass the relevant spatial 
scales for their study population, hypothesised 
mechanisms, and outcomes. This approach

avoids the constant-size neighbourhood trap and 
acknowledges the possibility that greenspace 
affects human health at different scales; (2) Use 
data considerations to establish sizes: buffer sizes 
should respect the limitations of the data. Min-
imum sizes should exceed the resolution of 
greenspace data, geocoding accuracy, and pos-
itional errors. If the applied buffer size is smaller 
than the greenspace data resolution, adjacent 
buffer values become correlated or identical. 181 

Maximum sizes can be informed by lacunarity 
curves and model averaging, 122 local variance, 
semivariance, and scale variance at different lags, 
indicating sizes that allow for sufficient variation 
in exposure assessments. 155 Overly large buffers 
might fail to capture local greenspace variability 
and important spatial details; 182 (3) Align buffer 
sizes with mechanistic hypotheses: different 
health pathways operate at different spatial scales. 
Mechanisms that involve visual access, such as 
psychological restoration, require smaller buffers, 
whereas larger buffers might better capture 
physical activity and urban heat island effects. Air 
quality and allergen exposure might require 
multiple scales to account for both localised and 
broader effects; (4) Report results across multiple, 
standardised buffer sizes: rather than selecting a 
single optimal size based on the association 
strength, researchers should analyse and report 
results across at least three buffer sizes. Recom-
mended metric distances include 25, 50, 100, 
300 m (preferable to 250 m, as 300 m is closer to 
an adult’s 5-min walking distance and used in 
greenspace policy 149,151 ), 500 m, 800 m (approxi-
mately a half-mile walking distance), 1000 m, 
1⋅5 km, and 2 km. We encourage researchers 
working in settings where non-metric units are 
used (eg, the USA, the UK) to adopt metric units 
for comparability; (5) Implement distance-decay 
approaches when appropriate: for proximity-
sensitive mechanisms (eg, visual access), use 
distance-decay or fuzzy-distance approaches that 
weight exposure based on distance from LOIs. 
Traditional circular buffers can serve as a basis 
for sensitivity analyses to ensure comparability 
between studies.

Future directions
As greenspace–health research evolves, new determinants 
might emerge that influence buffer selections. The guide-
lines presented here reflect best practices based on current 
evidence and expert consensus, but should be updated to 
reflect new methodological and data developments. We 
acknowledge that this guidance primarily focuses on 
individual-level data and exposure assessments. Although 
ecological studies have value, our recommendations are 
intended to support individual-level epidemiological
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analyses. Although our focus was on greenspaces, the 
principles and guidance presented here might also inform 
methodological developments in other domains of spatial 
epidemiology research, such as blue space–health studies, 
where similar challenges exist in exposure assessment. 
Ultimately, the aim is to transition from ad-hoc buffer 
selection to systematic, hypothesis-driven approaches that 
enhance the rigour and reproducibility of greenspace– 
health research while supporting evidence-based policy 
and practice.
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