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Greenspace can promote health via diverse pathways. A common approach to assessing greenspace exposure is to
estimate vegetation availability within buffers surrounding locations where people reside or spend time. However, no
clear framework for informed buffer selection exists, and choices made show considerable heterogeneity, impeding
evidence synthesis and causal inference. In this Personal View conducted by an interdisciplinary panel of experts, we
aimed to establish a framework for informed buffer selection for epidemiological studies on greenspace. We began
by reviewing available approaches for the selection of buffer types, which range from single fixed-location approaches
to high-resolution mobility-based activity-space approaches, as well as different buffer sizes. We then summarised
the determinants of buffer type and size selection including health outcomes and underlying mechanisms, study
population, contextual factors, and data characteristics. Finally, based on these determinants, we developed recom-
mendations for future research. Buffer type and size selection should be hypothesis driven, reflecting presumed
greenspace-health mechanisms. Buffer selection should target activity-based approaches where feasible, and mul-
tiple buffer sizes should be tested. Overall, the assessment of greenspace exposure should shift from ad-hoc
approaches to personalised, multiscale, and context-specific methods. We call for standardising and reporting the
rationale for buffer selection to minimise bias and enhance comparability and evidence synthesis across studies.

Introduction

The relationship between natural environments and
human health has gained increasing recognition in recent
decades, with accumulating evidence showing that green
spaces promote both mental and physical wellbeing via
multiple interconnected pathways.'* These mechanisms
include mitigating environmental hazards such as air pol-
lution and extreme heat,** reducing stress and buffering
against future stressors,’ restoring attention and cognitive
capacities,® facilitating physical activity and social contact,’
and supporting microbiota diversity'® (panel).

Greenspace exposure is commonly assessed around
locations of interest (LOIs) where people reside!""? or spend
time (eg, schools,”” workplaces, and commuting
routes'). The standard approach of assessing greenspace
exposure involves aggregating metrics such as average,'
variability,"” or percentage® of vegetation or vegetated land
cover (eg, parks or tree canopy) within specific geographical
boundaries surrounding each LOIL. These geographical
boundaries, collectively referred to as buffers, can be based
on administrative units (eg, postal codes) or various shapes
and sizes. For consistency, we use the term buffers to
refer to all geographical boundaries surrounding LOIs,
acknowledging that some might not strictly align with the
conventional definition of the term.

The selection of buffer types and sizes is an important
decision that directly influences the results of a greenspace
exposure assessment.”?' Buffers define the boundaries
within which exposure is measured, and, equally, where it
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is excluded. Despite the importance of buffers, limited
theoretical or empirical guidance exists on how to select
appropriate buffer types and sizes. Consequently, studies
vary widely in how buffers are selected, with choices
differing in size, type, and stated rationale.””* This het-
erogeneity leads to inconsistent findings? by influencing
both the magnitude and direction of the estimated
greenspace-health associations,?***** limiting causal
inference and cross-study comparison. This issue is closely
linked to the modifiable areal unit problem (MAUP), where
the shape and size of an analytical unit affect both exposure
estimates and their associations with human health*-*
(figure 1). Additionally, buffer selection is subject to the
uncertain geographical context problem (UGCoP)**
which highlights the inherent difficulty of accurately cap-
turing dynamic, time-varying exposure patterns within
static spatial boundaries.

Inconsistent approaches to buffer selection have become
a substantial barrier to synthesising evidence on
greenspace-health associations. Homogenising buffer
selection approaches would help to resolve uncertainties
regarding exposure effects and underlying mechanisms,
supporting the establishment of causal pathways and
mechanisms. Reducing methodological heterogeneity
would also provide a more robust foundation for policy
development and implementation. Although several stud-
ies have examined specific aspects of buffer selection,?¢*
these efforts have primarily focused on a limited number of
determinants, addressing only single dimensions (ie, size
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Panel: Glossary of technical terms

Activity space: the locations and places where participants spend time during their daily activities.
Adaptive buffer sizes: the application of varying buffer sizes for different participants and contexts to address the constant-size

neighbourhood trap.

o Adaptive circular buffers: the use of varying buffer distances to draw circular buffers around locations of interest.
Adaptive kernel density estimation: a form of kernel density estimation in which the bandwidth varies by location or characteristics

of the points.

Administrative units: subdivisions of geographical areas or territories recognised by governments for administrative purposes.
o Buffers: discrete zones, measured in units of distance or time, which are superimposed onto the location of interest.
Constant-size neighbourhood trap: a problem resulting from all participants having the same activity space, as defined by similar

buffer sizes, without considering relevant determinants.

e Edge effects: the potential for exposure misclassification among participants living near the borders of the defined buffer (also

known as boundary effects).

e Exposure misclassification: errors in how an individual’s exposure to an environmental factor (eg, greenspace) is measured or
categorised, occurring when the assigned exposure level does not accurately reflect the true exposure experienced by a person.

e Geographical masking: techniques used to deliberately modify or obscure the true geographical locations of individuals in spatial
datasets to protect privacy and confidentiality (also known as geomasking).

e Greenspace: land that is partly or completely covered with grass, trees, shrubs, or other vegetation.
Greenspace exposure: a term used for consistency with epidemiological literature, while recognising its limitations in capturing

reciprocal human-nature interactions.
Green space: a parcel of land covered with greenspace.

e Lacunarity: a scale-dependent measure of spatial heterogeneity or texture of a landscape used for spatial heterogeneity

measurements.

e Modifiable areal unit problem: a source of statistical bias and uncertainty that arises when the spatial scale or boundaries used to
aggregate geographical data are arbitrarily defined or modifiable.

o Neighbourhood effect averaging problem: the problem where participant mobility-based exposures to environmental factors tend
towards the mean level of participants or the population of a study area, rather than their residence-based exposures.

e Positional error: inaccuracy in the measured or recorded spatial location of a feature due to errors in GPS, survey equipment, or

georeferencing.

o Selective daily mobility bias: a bias in activity-space approaches where a participant appears to be more (or less) exposed to
environmental characteristics (eg, greenspace) due to their personal decisions about activities and where to conduct them.

e Semivariance: one-half of the variance of the differences between all possible points spaced a constant distance apart.
Shadow buffer: a buffer (also known as a buffered administrative unit) with a specific distance around the main buffer
(eg, administrative unit) to compensate for edge effects among participants living near buffer boundaries.

e Trim distance: a distance that is added to the line drawn by network buffers or straight-line ellipses to create a polygon from lines

(also known as trim buffer).

e Uncertain geographical context problem: the problem that findings about the effects of area-based attributes (eg, land use mix)
on participant behaviours or outcomes (eg, physical activity) can be affected by how contextual units or neighbourhoods are

geographically delineated.

or type, but not both), or reflected perspectives from a single
discipline and geographical region.

To address these limitations, we assembled an interdis-
ciplinary panel of experts representing diverse geographical
contexts, from low-income and middle-income countries to
high-income nations across all continents, to establish
guidance for buffer selection in greenspace epidemiology.
This guidance seeks to achieve five key objectives: (1) con-
textualising buffer selection within the continuum of loca-
tion data granularity available for exposure assessment;
(2) reviewing available buffer type delineation approaches;
(3) examining buffer size considerations; (4) identifying and
systematically organising the determinants that inform
buffer type and size; and (5) developing recommendations
for selecting buffers in future greenspace-health research.

By providing this guidance, we aim to transition greenspace
exposure assessments from ad-hoc approaches towards
more systematic, hypothesis-driven, and context-appropriate
methods.

A continuum of location data granularity

Location data for greenspace exposure assessment exists
along a continuum of spatial and temporal granularity,
ranging from single-point locations to comprehensive
activity-space approaches (figure 2). At the simplest end of
this continuum are single-point LOIs, such as residential
addresses, which are commonly used*® but necessarily
assume that exposure at a single location sufficiently
captures most environmental exposures. Although these
approaches lack temporal granularity, their spatial
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precision can vary depending on the geocoding accuracy
and resolution of the address data.

Recognising that individuals move through multiple
environments during their daily lives, more sophisticated
approaches incorporate data from multiple locations
to create more comprehensive assessments.* Such
approaches include commonly visited locations beyond
the home (or other single LOI), such as workplaces or
recreational sites, to better account for daily movement
patterns and construct an individual’s activity space.
Travel diaries and map-based questionnaires provide
additional granularity by recording the time spent at each
location, enabling time-weighted calculations that better
reflect cumulative exposure patterns.

At the most detailed end of the spectrum are continuous
mobility data, such as GPS or mobile phone location
tracking. These data enable high-resolution spatiotemporal
mapping of an individual’s movement and real-time
environmental context.*” This approach has the potential
to capture nearly complete exposure profiles, accounting
for both locations visited and the duration spent in each
environment, without the limitations of self-reported
data. Still, a 2019 review found that single fixed-location
approaches were used in approximately 53% of studies
investigating the built environment and human health.*
Meanwhile, another review on the relationship between
nature and children’s mental health found that only 1% of
included studies used GPS tracking for their exposure
assessments.*

The abundance of studies at the simplest end of this
continuum reflects the ongoing challenge of balancing
simplicity and feasibility on the one hand, with complexity
and precision on the other (figure 2). This balance is shaped
by the availability of data for a given outcome or population,
as well as the time and resources required for data collection
and processing. It is also influenced by the research ques-
tion and underlying hypotheses about how greenspace
is expected to influence outcomes. For example, high-
resolution GPS data are typically available for a limited
number of participants and miss frequently visited loca-
tions that fall outside the tracking period.* In contrast,
online questionnaire data capture habitual locations across
broader populations but are limited by the participants’
ability to accurately recall where they went, for how long,
and under what circumstances. Accordingly, studies
focused on momentary or short-term exposures might be
better suited to GPS-based approaches, whereas those
examining cumulative exposure patterns over longer petri-
ods might benefit more from self-reported location
histories.

An overview of buffer types

Buffers can be of different shapes and be flexibly combined
with various types of location data. For example, network
buffers can be applied to GPS-derived locations, whereas
time-weighted or composite buffers can be constructed
from diary-based or self-reported locations. In this section,
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we provide an overview of the buffer types commonly used
in greenspace exposure assessments and how they are
delineated based on the granularity of the available location
data. We categorise the buffer delineating approaches into
four main groups: (1) predefined-area approaches, in which
boundaries follow predefined spatial units such as admin-
istrative areas® or grid cells; (2) single-location approaches,
in which fixed distances or travel times are calculated from
an LOI; (3) travel-diary or intermittently tracked location
approaches; and (4) GPS tracking approaches, which
incorporate continuous mobility data (figure 3).

Predefined-area approaches

Administrative units

Using administrative units is a well-established approach to
delineating geographical boundaries.*~¢ In this approach,
all participants with the same unit (eg, county, census tract,
or postal code) are assigned the same exposure value.
However, participants living near unit boundaries might be
more influenced by adjacent areas (an edge effect),
increasing the risk of exposure misclassification.?**

The main advantages of administrative units include their
relevance to policy decisions and their use as standard units
for aggregating sociodemographic and health statistics. The
main disadvantages include poor alignment with partic-
ipants’ activity spaces,”* and exposure misclassification for
participants living near unit boundaries."**? Other limi-
tations include the substantial variation in unit shapes and
sizes, often related to population density,” as well as changes
in unit boundaries over time.”****> Such variation might
result in differing levels of precision for exposure assess-
ments between participants in small (eg, urban) and large
(eg, suburban or rural) units. Smaller units also increase the
likelihood that participants spend substantial amounts of
time outside their assigned area,’**” a limitation that might
be less influential in specific populations (eg, older adults
tending to stay closer to their residence). Conversely, larger
units might encompass green spaces not actually visited
by participants, reducing exposure contrast and limiting
statistical power.”

Grid cells

This approach involves superimposing a grid on the study
area and estimating participants’ greenspace exposure
based on the grid cell intersecting with their LOL®
Two common approaches for grid definition are used:
(1) assigning values from image pixels (eg, 30 x 30 m pixels
of Landsat satellites’ images) and (2) using a predefined
grid (eg, 500 x 500 m cells).

In the pixel-based approach, greenspace values from
satellite or aerial images are directly overlaid onto LOIs, and
the pixel value containing the LOI is used as the exposure
estimate. In the predefined grid approach, the researcher
creates a grid that is overlaid with the greenspace data
(eg, satellite images or land cover), calculates the average
greenspace value within each cell, and assigns that average
to all LOIs within the same cell.
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In both cases, all participants within the same cell are
assigned the same exposure value, regardless of their pre-
cise LOI locations. Although relatively easy to implement,
this approach overlooks intracell variation. This limitation
is particularly relevant when cells are large and the research
question involves micro-scale exposures near the LOI. In
such cases, the exposure estimates of LOIs near the edge of
a cell might be misclassified due to their distance from the
cell centroid.”

Single-location approaches

Circular buffers

Circular buffers, also known as Euclidean, crow-fly, radial,
straight-line, or uniform buffers, are among the most
common approaches to delineating buffers in greenspace—
health research.”«**? These buffers are defined as circles
centred on an LOI, with a radius specified by the researcher.
Greenspace exposure is typically calculated as the average
value within the buffer area, assuming that all points within
the boundary contribute equally to exposure.

A key limitation of this approach is the inability to dif-
ferentiate the influence of greenspaces at varying distances
within the LOL® Since greenspace use often decreases
with increasing distance from a participant’s residence
(although not always),””* larger buffers may include areas
that participants rarely or never visit. In these cases,
applying a distance-decay function can help to model the
declining likelihood of greenspace use with increasing
distance.®

Similar to administrative unit and grid cell approaches,
circular buffers also fail to account for physical barriers
such as major roads, rivers, or private properties, which
might restrict access to nearby greenspaces.®’

Nested buffers

Nested buffers consist of a series of non-overlapping
buffers of increasing size, designed to examine how the
relationship between greenspace exposure and health out-
comes varies with distance from an LOL.2%*% Typically, the
innermost buffer is a circular area closest to the LOI,
whereas subsequent buffers take the form of concentric
rings, also known as doughnut-shaped buffers” that rep-
resent specific distance bands (eg, 0-100 m, 100-300 m,
300-500 m).

Although most nested buffer approaches are concentric,
they can also take irregular shapes. For example, a school
catchment zone might exclude the school building and its
grounds when estimating exposure for students who live
nearby.®”* Several studies have compared nested buffers
with overlapping circular buffers,”7* and a review recom-
mended using nested buffers when the goal is to assess the
independent contributions of greenspace at varying
distances from an LOL*

Network buffers
Network buffers approach estimates the area accessible
within a specified distance or travel time from an LOI by

tracing routes along street or footpath networks. Some
approaches incorporate travel time, applying assumptions
regarding average movement speeds.

Polygon-based network buffers generate a polygon by
connecting the endpoints of all possible routes along a
network extending up to a given distance (eg, 800 m or a
15-min walk) from the LOL” This approach is intended to
more accurately reflect accessible areas compared with
circular or administrative unit buffers. However, connect-
ing street nodes with straight lines might misrepresent
actual travel paths, particularly in areas with irregular street
layouts or informal shortcuts.”

Line-based network buffers, also referred to as detailed,
road-based, route-based, sausage, or trip buffers, use the set
of all network lines from an LOI to endpoints within a
specified distance.”*”° These lines are typically buffered by
a small perpendicular offset (a trim distance) before being
intersected with greenspace parcels,”* so that only green-
space within a specified proximity to the network is inclu-
ded. This approach might better reflect visible or accessible
greenspace, particularly for pedestrians,* and is less likely
than polygon-based buffers to capture large, inaccessible
greenspaces.”” One study found that line-based network
buffers showed stronger associations with mental health
outcomes then circular buffers.*

However, line-based buffers might still include private
green spaces. Adjusting the trim distance can help to
mitigate this issue, but might reduce comparability across
studies due to differences in local conditions (eg, street
widths) and map data formats (eg, polygonal streets vs
centrelines).” Additionally, network buffers assume that
participants travel only along roads or designated footpaths,
omitting informal or off-network routes commonly used in
real-world settings.”

Assumptions regarding travel mode (eg, walking, cycling,
or transit) and average speed also influence the size and
shape of network buffers and thus affect exposure esti-
mates.®?® Although network buffer approaches allow for
incorporating factors such as street sinuosity, slope, and
perceived safety,* these considerations have rarely been
applied in network-based greenspace exposure assessments,
despite their potential importance for specific populations
(eg, participants with mobility limitations).'s*

Travel diaries and intermittent location tracking
Standard deviation ellipses

The standard deviation ellipse (SDE) approach represents a
participant’s activity space by summarising the spatial
spread and orientation of their movement or activity loca-
tions.* The SDE approach generates an ellipse based on the
standard deviation of X and Y coordinates, typically using
one or two standard deviations, to define the radius along
each axis.®” Ellipses can be constructed using anchor
points® or GPS tracking data.”” Although this approach
provides a spatial footprint of activity, one study found that
SDEs tend to overestimate the size of the actual activity
space.®
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Minimum convex polygons

The minimum convex polygon (MCP), also known as the
minimum convex hull or home range,® is the smallest
convex polygon that encompasses all recorded activity
locations, with internal angles less than or equal to
180 degrees.® MCPs can be constructed from as few as
three anchor points (eg, home, workplace, and a third
routine location).” However, because the polygon is
defined by the outermost points, this approach often over-
estimates the true extent of a participant’s activity space,
sometimes by a factor of 100 or more, making it poorly
suited for most greenspace exposure assessments.”

Self-drawn neighbourhoods

The self-drawn neighbourhood (SDN), also known as a self-
defined neighbourhood” or cognitive map,” is created by
asking participants to draw the boundary of what they
perceive as their neighbourhood on a map.** Although this
approach offers data on each participant’s perceptions
of space, it has notable challenges, including variability
across contexts, low familiarity with neighbourhoods, and
challenges in replicability.***

SDNs can include areas not directly used in participants’
daily routines. For example, a study in West Yorkshire, UK,
found that SDNs captured only 10% of participants’ actual
daily movement, and 40% of the area within the drawn
boundaries was not visited by participants.* Factors such as
socioeconomic and demographic characteristics, physical
and mental health, and transportation mode can influence
the size and accuracy of SDNs.”>7*® For instance, longer
residence duration, higher education and income, and
greater neighbourhood engagement, have been associated
with larger perceived neighbourhood areas.”

Importantly, the places participants recall when drawing
their SDN might reflect locations that are particularly sali-
ent or meaningful. From this perspective, discrepancies
between SDN and actual movement patterns might not be
limitations, particularly in studies aimed at comparing
different greenspace exposure mechanisms (eg, physical
activity and attention restoration). This approach might be
particularly relevant for health pathways that involve psy-
chological benefits, where subjective perceptions play a
central role.'®

Daily path areas
The daily path area (DPA) approach delineates a participant’s
activity space by adding fixed-distance buffers around
movement points (eg, GPS data) or lines (eg, participant-
drawn travel routes). When high-resolution tracking data
are available, this approach can, in principle, capture par-
ticipants’ cumulative greenspace exposure across their daily
routines.”*** A time-weighted DPA can also be constructed
by incorporating the duration associated with each location
point.42,49,70

DPA-derived exposure estimates tend to correlate weakly
with those based on residential neighborhoods®” but show
stronger correlations with estimates from MCPs and

www.thelancet.com/planetary-health Vol = m 2025

SDEs.* Limitations of this approach include low reprodu-
cibility due to the dynamic nature of human movement
location, particularly when applied over shorter timeframes
(eg, daily vs monthly). Additional challenges include par-
ticipant recruitment, adherence, and retention, as well as
the burden of having to track their movements placed on
the participants.’' Some of these challenges might be
mitigated using passively collected time-location data, such
as smartphone-based GPS tracking.'”

GPS tracking: kernel density estimation

Kernel density estimation (KDE) is a statistical approach
that transforms discrete point data (eg, GPS locations) into
a continuous probability surface across a grid.’*'% Each
grid cell (or pixel) represents the weighted density of nearby
points within a specific search radius, with weights typically
decreasing with increasing distance from the cell.'” KDEs
can account for both the frequency and duration of visits to
specific locations,”” and are often used to identify clusters of
activity points.'*

An extension of this approach, adaptive KDE, adjusts the
search radius based on the density of observation points
and characteristics of the built environment.1% Unlike
standard KDE, which assumes a homogeneous back-
ground, adaptive KDE allows bandwidths to vary as a
function of spatial context, enabling more refined model-
ling of activity patterns in heterogeneous environments.'”

An examination of buffer sizes

A buffer’s size clarifies the size of the spatial area within
which greenspace is assessed, and the specific definition
varies by buffer type. For circular buffers, the size refers to
the radius; for network buffers, it is the distance measured
along transportation networks; for DPAs, it is the offset
distance around points or lines; for SDEs, it is defined by the
number of standard deviations used to construct ellipses;
and for KDE, it corresponds to the search radius used to
create the density surface. Cell resolution serves as the spatial
size in grid cell approaches, whereas MCPs are data-driven
and do not require the selection of a buffer size.

Buffer sizes in greenspace epidemiological studies range
widely, depending on the research question and hypoth-
esised exposure pathways. This range spans from a few
metres (eg, 20 m to develop a building proximity to green-
space'™) to several kilometres (eg, 10 km for studies of
greenspace and allergens'"). This range can be categorised
into three meaningful scales®: (1) personal scale (10-100 m),
which captures immediate surroundings and direct
environmental exposures around participant locations;
(2) neighbourhood scale (100-2000 m), which encompasses
areas where most daily activities occur, including local parks,
neighbourhood green corridors, and accessible recreational
spaces (eg, from a few hundred meters'? up to around
2 km'™); (3) city or district scale (>2 km), which includes
broader urban green infrastructure that might influence air
quality, temperature regulation, and regional environmental
conditions.
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Figure 1: Schematic representation of the modifiable areal unit problem (MAUP)
(1) presents the study area with four participants (A, B, C, and D), residing in an area with 4 x 4 (i.e. 16) areal units. (Il) presents four buffers with a 2 x 2 (i.e. 4) units delineation. The estimated greenspace
exposure of participants (measured as the number of trees per area unit) ranges from 0-56 to 0-81. (lll) shows the effect of scale (buffer size) in MAUP. By using a smaller buffer size, the exposure to
greenspace ranges from 0-00 (for C) to 2-00 (for D). (V) represents the effect of shape in MAUP. The buffer areas in Il and IV are both equal to four units but have different shapes. The estimated exposure

ranges from 0-12 to 1-12.
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Figure 2: Continuum of location data granularity for greenspace-health studies

The figure illustrates the trade-offs between granularity, spatial and temporal precision, and methodological complexity across different approaches to defining an
individual's environmental context. Neighbourhood-level and single-location approaches (eg, administrative units) are simple and widely used but provide lower
precision. Travel-diary and multiple-location approaches incorporate habitual mobility patterns, offering intermediate precision and complexity. The continuous GPS
tracking approach offers the highest spatial and temporal resolution but requires advanced data processing, raising concerns regarding feasibility and privacy.

Pathway-specific considerations of buffer sizes

Different pathways by which greenspace benefit health are
likely to operate at various spatial scales. Evidence suggests
that measuring greenspace in smaller buffers produces
stronger health associations for certain mechanisms,

whereas large buffers might be more relevant for other
mechanisms, such as physical acitivity.”*"s In dense urban
environments, for example, very small buffers around the
home might be especially relevant for mental wellbeing,
given the heightened importance of visual access to
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Figure 3: Buffer types of greenspace-health studies

(A) The study area; (B) Grid cells; (C) Administrative units; (D) Circular buffers; (E) Nested buffers; (F) Line network buffers; (G) Polygon network buffers; (H) Daily path areas; (I) Standard deviation ellipses;

(J) Minimum convex polygons; (K) Kernel density estimations; (L) Self-drawn neighbourhoods.

greenery. These micro-scale exposures can support stress
reduction and psychological restoration, particularly when
larger green spaces are inaccessible. Research in Singapore
has showed curvilinear relationships between greenspace
and mental health across increasing buffer sizes for circular,
network, and nested buffer approaches.”? However, findings
across studies remain heterogeneous, with some reporting
consistent associations across multiple buffer sizes, even
among subpopulations with varying mobility patterns.!®

Methodological challenges of large buffer sizes

Larger buffer sizes introduce several analytical challenges.
They can mask spatial heterogeneity in greenspace exposure
at finer scales,"”"* reducing variability in exposure esti-
mates." This problem is particularly pronounced in dense
urban areas where participants’ large buffers might overlap
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substantially, creating spatial autocorrelation that should be
addressed by specialised regression techniques.?'?

More generally, every environment has an upper limit for
buffer sizes, beyond which buffers are unlikely to capture
meaningful exposures.’** The lacunarity curve, a spatial
scale-dependent measure of heterogeneity, can help to
identify this upper boundary, based on evidence from a
preprint paper and a research article.®'* For example,
research in Manchester, UK, identified upper bounds for
normalised difference vegetation index variance at
approximately 640 m for Sentinel-2 imagery and 480 m for
Landsat-8 imagery.®

Concluding thoughts on buffer sizes
Given these considerations and challenges, no universally
correct buffer size exists. The optimal choice depends on



http://www.thelancet.com/planetary-health

Personal View

multiple factors, including the specific health outcomes),
hypothesised causal pathway(s), study population charac-
teristics, and local environmental context. Because lacu-
narity analysis only guides the selection of the largest buffer
size, Bayesian model averaging has been proposed to
address contextual uncertainties by pooling greenspace
effect estimates across multiple buffer sizes within
appropriate upper boundaries.'*

Determinants of buffer selection

Although there is no single formula for choosing buffer type
and size, researchers can rely on several key determinants to
inform their choices.

Health outcomes and underlying mechanisms

The hypothesised mechanisms linking greenspace to
health outcomes should guide buffer selection. For
example, when examining neighbourhood social phe-
nomena (eg, social capital or crime rates), perceived areas
through SDNs might be most relevant. Circular or network-
based buffers can conceptually represent individual
exposure environments, but their application becomes
statistically constrained when outcome data are only avail-
able at a coarser spatial resolution. In such cases, all buffers
within the same administrative unit receive identical
values, leading to non-independence of observations,
pseudoreplication, and artificial inflation or deflation of
statistical power.'* This spatial mismatch between expos-
ure and outcome can bias effect estimates and limit
interpretability.

The assumption that network buffers are always more
appropriate than circular buffers should also be questioned.
For health outcomes not limited to travel and roads (eg, air
pollution and pollen exposure), circular buffers might be
equally appropriate or superior."?* Network buffers are
generally more Dbeneficial when outcomes relate to
greenspace accessibility and behaviours such as physical
activity.®®'#126 However, observed associations between
greenspace exposure and outcomes do not necessarily
indicate that greenspace within road network buffers
increases physical activity. Instead, this could be explained
by physically active individuals selecting routes with more
green space, also known as a selective daily mobility bias.'*

Small buffers might be more appropriate for outcomes
related to psychological restoration, stress reduction via
visual access to greenspace, noise annoyance, or individual
microbiota enrichment.'” For mechanisms operating
through visual access, residential building density is an
important consideration.'” In dense urban areas, residents
on ground floors might only see a few metres of green-
space, whereas those on higher floors might have sub-
stantially farther views, warranting larger buffers for
residences on higher floors.

For outcomes hypothesised to relate primarily to physical
activity, purposeful visits, or greenspace use, buffer selection
is challenging given the highly variable nature of human
behaviour. A 300-m radius represents approximately a

5-min walking distance, whereas 500-m radius represents
5-10-min distance and 1000-m radius represents 10-15-min
distance.'*'® Although some studies suggest greenspace use
declines rapidly beyond 100-300 m from home,”* larger
buffers have also been better predicted to improve physical
health and loneliness.”*" Browning and Lee’s systematic
review found that buffer sizes between 1000 and 1999 m
showed more consistent protective associations between
greenspace and physical health (including physical activity)
than smaller or larger sizes.* Buffer-based metrics, such as
the percentage of area covered by green spaces or parks, can
Dbe useful for opportunities for green space access and use.
Still, alternative metrics, such as straight line or network
distance to the nearest park of a specified minimum size,
might be equally relevant for physical activity-related
hypotheses; however, these distance-based measures are
beyond the scope of this Personal View.

For pollen exposure conditions, a New York study
reported that pollen levels correlated with tree cover in
radial buffers of around 1000 m, more specifically between
250 and 500 m, depending on the plant species and pollen
size, shape, and weight."*

Buffer size selection also depends on the cooling effects
of green spaces near an LOI. The strongest ambient air
temperature and heat stress reduction occurs at closer
distances to (< 380 m, and likely, strongest within 150 m).>
However, cooling distance depends on park size, shape,
and climate, with parks smaller than 10 000 m? often
showing no notable cooling effect.”!

Population characteristics
Study population characteristics substantially influence
buffer selection. Health and health-related behaviours
(eg, pregnancy, disability, fitness level), sociodemographic
characteristics (eg, age, gender, ethnicity, socioeconomic
status, employment), and preferences related to greenspace
(eg, professional joggers, nature enthusiasts) affect mobil-
ity capacities, opportunities, needs, choices, and societal
constraints (including those generated by stigma and
structural discrimination).' These characteristics should
therefore guide buffer type and size selection.®
Age-related mobility patterns are particularly relevant.
Children and older adults typically travel shorter distances
than adolescents and younger adults; an average 5-min
walk is approximately 200 m across all ages compared to
300 m when excluding older adults and 320 m when add-
itionally excluding children.”**>** Similarly, pregnant
women’s activity spaces tend to shrink in late pregnancy.”
For these populations, smaller circular or network buffers
centred around the residence might be most relevant.'1%¢
Highly mobile populations (eg, employed individuals,
younger participants, high-income participants, car own-
ers) can pose challenges related to the neighbourhood effect
averaging problem when using solely residence-based
approaches.’” For these populations, approaches using
travel diary, intermittent location tracking, or GPS data
(eg, DPA or KDE) might provide more accurate
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assessments.**'*® Personal preferences, such as connect-
edness to nature, can also affect buffer selection, as people
with higher levels of connectedness might travel greater
distances to access greenspace.' These findings highlight
the potential value of participant preferences when
selecting buffer types and sizes.

In summary, for studies focusing on a specific sub-
population (eg, pregnant women, children), buffer type and
size should prioritise the group characteristics and mobility
patterns. For studies with heterogeneous populations,
applying multiple buffer sizes and types relevant to the
included population groups (as sensitivity analyses) and
testing interactions between buffer sizes and types can help
to evaluate whether exposure affects population groups
differentially.

Contextual factors

Study setting

Study area characteristics such as urbanicity and climatic
zone affect should to be considered in buffer type and size
selection.'*®!*14 Beyond greenspace, buffers often include
non-green elements such as roads, buildings, or pollution
sources that can influence health or potentially alter or
confound the mechanisms through which greenspace
exerts its effects. In historical areas with dense, irregular
forms, a single fixed-location approach (typically home)
might capture built-up residential environments, com-
pared to an activity-space approach that captures more
distant greenspace.'* However, these approaches answer
different research questions—buffers at single fixed loca-
tions reflect greenspace accessibility or availability, whereas
activity-space approaches measure realised exposure based
on behaviour. The opposite pattern might apply to residents
of suburban areas who travel to dense urban centres for
work or education, leading to mismatches between
residence-based and actual greenspace exposure. Such
scenarios exemplify the neighbourhood effect averaging
problem, where relying on residential-based exposure can
mask true individual variability due to daily mobility
patterns.

Urbanicity also influences the relevance of the buffer size.
A Hong Kong study across six regions with varying urban-
icity found that associations between greenspace and per-
ceived general health differed by buffer size across settings.
In highly urbanised areas, statistically significant associa-
tions were observed within smaller buffers (100-500 m),
whereas in less urbanised regions, stronger associations
emerged at larger buffers (2000-5000 m).'?

Beyond urbanicity, characteristics of greenspaces, such
as size, shape, public access (ie, hours, entrance fees), and
qualities, might modify buffer size recommendations
when nearby greenspaces do not meet residents’ needs.
Climatic conditions also matter—in extreme or arid cli-
mates, accessibility and availability of nearby greenspaces
can change seasonally, potentially justifying larger or more
flexible buffers to capture seasonally preferred or distant
locations. Conversely, in tropical or temperate zones with
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evergreen vegetation, greenspace use tends to be more
consistent year-round, meaning that buffer selection is less
affected by season and data collection timing. However,
in large-scale studies (eg, continental or national level),
using small cell sizes (eg, dozens of metres) might have
computational limitations.™

Additionally, the LOIs included in a study shape buffer
selection. Activity-space approaches include LOIs access-
ible through commuting and travel modes (eg, cycling,
walking, transit). However, if a study focuses on particular
associations in predefined settings, buffer approaches
using multilocation data might not provide additional
benefits over those centred on single locations.

Planning policies

Buffer selection can influence how easily research findings
inform decision making.'* The European Commission
defines access to greenspaces as living within a 300-m
distance from a green space of at least 5000 m? There-
fore, some studies have used a 300-m circular buffer around
homes to extract surrounding greenspace in line with this
indicator."'* Other examples of greenspace thresholds
include a 10-min walk to a park, widely used in the USA,™°
the 15-min city framework, and the 3-30-300 rule.™>!
Considering these thresholds when selecting buffers can
aid studies motivate and monitor greenspace access
initiatives.

Since administrative boundaries are often more relevant
for policy makers, studies intended to inform policies
might be justified in using this buffer type.?*'*? Conducting
analyses across administrative boundaries at different
scales might tailor findings to decision making at various
levels of government, ranging from local to national."”

Data considerations
Characteristics of data sources
Greenspace quantification traditionally relies on grid-based
raster files or land cover and land-use maps with specific
pixel sizes, minimum mapping units, or geometric accur-
acies.””* When greenspace data is raster-based, pixel size
(spatial resolution) measures the minimum usable buffer
size. For example, applying a 100-m buffer is not recom-
mended if the greenspace raster data has a 500-m reso-
lution. Similarly, due to geometric accuracy in land cover
maps (eg, approximately 100 m for CORINE Land Cover'),
smaller buffers carry a higher risk of exposure misclassifi-
cation compared with larger buffers. High-resolution raster
data or land cover and land-use maps with higher geometric
accuracy and smaller mapping units warrant applying
smaller buffers. Comparing spatial heterogeneity metrics
such as lacunarity, local variance, semivariance, and scale
variance at different sizes might be useful for buffer
selection.”™

Emerging data sources, such as street-view imagery,
social media, and social-sensing data, now complement
traditional remote sensing approaches to greenspace
assessment.”'® Street-level imagery (eg, Mapillary, Google
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Street View, Baidu Street View), when combined with
machine-learning techniques, enables quantification of
visible greenness through indexes such as the Green View
Index."*!® Unlike satellite-based metrics, Green View
Index captures human-scale, vertical, and facade-level
vegetation, offering more realistic approximations of vis-
ual greenery experienced by pedestrians. Social media and
social-sensing platforms, such as X (formerly Twitter), Tri-
pAdvisor, Instagram, and Foursquare, provide user-
generated data with insights into subjective perceptions of
greenspace.'*'? For example, sentiment analysis and a
hedonometer of X posts have been associated with park
visits with positive emotional responses.'®'** Such emer-
ging data sources might enhance our understanding not
only of greenspace quantity but also of quality, accessibility,
and user experience.

Data accuracy and availability

Location geocoding accuracy varies by approach and geo-
graphical area.’*®1% Street geocoding is among the most
common approaches in epidemiological studies,'” with
reported positional error for street geocoding ranging from
approximately 40 m to 75 m.'?

Another approach uses GPS devices or smartphone
applications, such as NatureDose™, to geocode partic-
ipants’ activity spaces.'® GPS devices used in epidemio-
logical studies usually have positional errors ranging from
10 to 20 m.* The buffer size should not be smaller than the
expected geocoding error.

Positional errors in urban areas and more densely
populated regions tend to be substantially smaller than
those in rural areas.””*'”* However, GPS receiver accuracy is
context-dependent as they regularly fail to record indoor
positions and are less accurate when signals are obstructed,
for example, by dense canopy cover’"? or tall build-
ings.”*'”* Geocoding accuracy is often higher in urban
areas than in rural areas, allowing the application of smaller
buffer sizes with greater confidence in urban settings.
Apart from introducing exposure misclassifications, geo-
coding errors can considerably bias travel estimates
(eg, network buffers results) and lead to imprecise acces-
sibility estimates.””®"”® Excluding participants due to
unavailable geocoding accuracy at desired buffer sizes can
introduce selection bias. A better approach is to report
results for these participants using a group with multiple,
larger buffer sizes.'®

Data ethics and privacy

Some data related to socioeconomic deprivation and health
are available only in aggregated form to preserve anonymity
and privacy."” For this data type, using the same aggrega-
tion area (ie, administrative unit) to assess greenspace is
recommended. When administrative areas are small or
population mobility is likely to extend beyond residential
units, using a shadow buffer might provide a more accurate
representation.”” Given the privacy concerns and data
protection regulations, some health data sources

intentionally introduce random errors in participant geo-
location, a process known as geographical masking.'” In
these cases, the buffer size for extracting greenspace should
be at least as large as the induced error size.

Guidelines for buffer selection in greenspace-
health research

The selection of appropriate buffer types and sizes is an
important methodological decision that directly influences
the validity and interpretability of research findings. Rather
than relying on arbitrary or conventional selections,
researchers should adopt a systematic, hypothesis-driven
approach grounded in the determinants outlined above
and depicted in the table (for selecting buffer types) and
figure 4 (for selecting buffer sizes). The following guide-
lines provide a framework for making these decisions while
acknowledging that no single buffer approach is universally
optimal.

General principles

(1) Apply a determinant-driven approach: buffer
selection should be explicitly justified based on key
determinants, including health outcomes and
underlying mechanisms, study population charac-
teristics, contextual factors, and data consid-
erations. This rationale should be clearly articulated
in study protocols and publications; (2) Implement
sensitivity analyses: given the inherent uncertain-
ties in buffer selection, researchers should examine
multiple buffer types and sizes as sensitivity ana-
lyses. This approach not only strengthens the
robustness of the findings but also provides
insights into the spatial scale dependence of
greenspace-health associations; (3) Avoid model fit-
based selection criteria: the choice of buffer types
and sizes for primary analyses should not be
determined by statistical model performance met-
rics (eg, R%, Akaike information criterion values).
Model fit might not accurately reflect the true
extent of greenspace influences on health outcomes
and can lead to post-hoc rationalisation of meth-
odological  choices." Instead, determinant-
informed approaches should guide buffer type
and size selection; (4) Prioritise buffer type before
size: although both buffer type and size are
important, buffer type should be selected first
based on relevant determinants. Size can then be
flexibly selected within plausible ranges.

Buffer type selection
(1) Prioritise activity-space approaches when feasible
and appropriate: high-granularity activity-space
approaches (eg, GPS tracking) better capture actual
exposure patterns than single-location approaches
and should be preferred for primary analyses when
resources and data permit; (2) Maintain single-
location approaches for comparability: even when
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Recommended applications When to avoid Best practices

Administrative units  Ecological studies, when health data are only available  Individual-level analyses with fine-resolution data Use shadow buffers to compensate edge effects, report
aggregated at administrative levels, informing policy limitations of this buffer type

Grid cells Raster data with matching resolution Large cells when fine-scale exposure is needed Use higher-resolution grids

Circular buffers Visual access, studies of greenspace mitigating harmful - When access is important for study context, population, Use distance decay weighting, combine with network
exposures or pathways buffers when appropriate

Nested buffers Exploring distance decay or effect variation by distance, As sole measure of exposure Use alongside other buffer types to explore gradient
sensitivity analyses effects, specify rationale for each distance band

Network buffers Studies focused on accessibility and use, physical activity Outcomes unrelated to mobility Incorporate travel modes, street attributes (eg, safety,
studies topography), adjust trim distances contextually

Standard deviation Rarely recommended due to large activity space As main buffer type for exposure assessment If used, use constraints or filters to exclude unused areas

ellipse overestimation

Minimum convex Large-scale movement pattern studies, exploratory As main buffer for exposure assessment Combine with time-weighting or other restrictions

polygon studies

Self-drawn When perceptions or subjective definitions of Precise spatial exposure assessments Compare with actual activity space, analyse

neighbourhood neighbourhoods are the key focus of studies discrepancies to explore perceptions versus reality

Daily path area Using high-resolution tracking data to assess actual Studies without reliable tracking data or if participants Use time-weighted approaches, supplement with other
exposure along routes cannot provide consistent paths buffer types

Kernel density Studies with fine-grained tracking data, when Sparse data or low point densities Use adaptive kernel density estimation to incorporate

estimation estimating exposure probability surfaces environmental characteristics, adjust bandwidths

appropriately

Vertical or 3D buffers  Dense high-rise urban settings, visual exposure Low-rise or open contexts in which vertical dimensions  Integrate with horizontal buffers, combine LIDAR or

assessments are less meaningful other 3D data when possible
Table: Buffer type selection guidelines for greenspace and health studies

Aerial photos Landsat MODIS WHO-Europe Approximately 10-min Maximum walking
spatial spatial recommendation walking distance distance More relevant
resolution resolution

<1m, 30m

800m 2km
H Less relevant

Contextual

Smaller

Figure 4: lllustrative framework for selecting appropriate buffer sizes based on contextual, pragmatic, population, and mechanistic considerations

The horizontal axis indicates buffer size (from smaller to larger), referencing spatial resolutions (eg, aerial photos, satellite imagery) and common distance thresholds (eg, WHO-Europe recommendation of
300 m and a 10-min walking distance of 800 m). The vertical axis organises criteria into four domains—contextual (eg, urban density), pragmatic (eg, positional error), population-specific (eg, vulnerable
groups and physical ability), and mechanistic (eg, mental wellbeing and physical activity). The colour gradients indicate the relative relevance of the buffer size within each domain; the more saturated
colours represent a higher relevance.
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using activity-space approaches, researchers can
report results for single-location buffers (typically
residential areas) to facilitate comparisons across
studies; (3) Use multiple locations when activity-
space data is unavailable: when comprehensive
mobility is not feasible, incorporating LOIs
(eg, home, work, school, commuting routes) is
preferable to relying solely on residential
addresses. This helps to avoid spatial misclassifi-
cation from the uncertain geographical context
problem; (4) Exercise caution with administrative
unit approaches: avoid administrative units and
other predefined spatial units for individual-level
analyses, as they often poorly represent activity
spaces and exposure patterns. However, these
approaches remain valuable for ecological studies
where exposure and outcome data are aggregated
at the same administrative level, and when it is
necessary to directly inform or monitor greenspace
policies (eg, the 3-30-300 rule); (5) Limit the use of
standard deviation ellipses and minimum convex
polygons: given their tendency to overestimate
activity spaces and include unvisited areas, SDEs
and MCPs should not serve as primary buffer types
unless combined with additional constraints or
filtering methods to exclude unused space; (6) Use
nested approaches for mechanistic studies: nested
or doughnut-shaped buffers can effectively exam-
ine how greenspace-health associations vary with
distance from LOIs, providing insights into the
relative importance of different mechanistic path-
ways; (7) Consider perceptual approaches for psy-
chological outcomes: self-drawn neighbourhoods
and other perceived approaches can offer insights
into mental health and health-related behavioural
outcomes, as subjective perceptions might be
more relevant than objective spatial boundaries;
(8) Explore 3D approaches in dense urban envi-
ronments: in cities with extensive high-rise devel-
opment and vertical greenspace (eg, Singapore,
Hong Kong), consider 3D buffer approaches that
account for green walls and elevated vegetation,
particularly for greenspace visibility mechanisms;
(9) Consider temporal weighting in activity-space
exposure assessments: when using GPS or other
mobility-based approaches, future studies should
incorporate not only spatial location but also time
spent in each place. Time-weighted exposure
estimates better reflect actual exposure patterns.

Buffer size selection

(1) Define size ranges based on multiple determi-

nants: rather than selecting single buffer sizes,
researchers should identify the lower and upper
thresholds that encompass the relevant spatial
scales for their study population, hypothesised
mechanisms, and outcomes. This approach

avoids the constant-size neighbourhood trap and
acknowledges the possibility that greenspace
affects human health at different scales; (2) Use
data considerations to establish sizes: buffer sizes
should respect the limitations of the data. Min-
imum sizes should exceed the resolution of
greenspace data, geocoding accuracy, and pos-
itional errors. If the applied buffer size is smaller
than the greenspace data resolution, adjacent
buffer values become correlated or identical.'®
Maximum sizes can be informed by lacunarity
curves and model averaging,'? local variance,
semivariance, and scale variance at different lags,
indicating sizes that allow for sufficient variation
in exposure assessments.”s Overly large buffers
might fail to capture local greenspace variability
and important spatial details;"®? (3) Align buffer
sizes with mechanistic hypotheses: different
health pathways operate at different spatial scales.
Mechanisms that involve visual access, such as
psychological restoration, require smaller buffers,
whereas larger buffers might better capture
physical activity and urban heat island effects. Air
quality and allergen exposure might require
multiple scales to account for both localised and
broader effects; (4) Report results across multiple,
standardised buffer sizes: rather than selecting a
single optimal size based on the association
strength, researchers should analyse and report
results across at least three buffer sizes. Recom-
mended metric distances include 25, 50, 100,
300 m (preferable to 250 m, as 300 m is closer to
an adult’s 5-min walking distance and used in
greenspace policy™*"), 500 m, 800 m (approxi-
mately a half-mile walking distance), 1000 m,
1-5 km, and 2 km. We encourage researchers
working in settings where non-metric units are
used (eg, the USA, the UK) to adopt metric units
for comparability; (5) Implement distance-decay
approaches when appropriate: for proximity-
sensitive mechanisms (eg, visual access), use
distance-decay or fuzzy-distance approaches that
weight exposure based on distance from LOlIs.
Traditional circular buffers can serve as a basis
for sensitivity analyses to ensure comparability
between studies.

Future directions

As greenspace-health research evolves, new determinants
might emerge that influence buffer selections. The guide-
lines presented here reflect best practices based on current
evidence and expert consensus, but should be updated to
reflect new methodological and data developments. We
acknowledge that this guidance primarily focuses on
individual-level data and exposure assessments. Although
ecological studies have value, our recommendations are
intended to support individual-level epidemiological
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analyses. Although our focus was on greenspaces, the
principles and guidance presented here might also inform
methodological developments in other domains of spatial
epidemiology research, such as blue space-health studies,
where similar challenges exist in exposure assessment.
Ultimately, the aim is to transition from ad-hoc buffer
selection to systematic, hypothesis-driven approaches that
enhance the rigour and reproducibility of greenspace—
health research while supporting evidence-based policy
and practice.
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